Skip to main content

Advertisement

Log in

Solar Irradiance Prediction Using an Optimized Data Driven Machine Learning Models

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

For a higher degree of penetration of renewable energy into the controls of the existing power system, an accurate solar energy prediction is necessary. Data-driven algorithms may be used to enhance solar generation forecasts as data has now become readily accessible in large quantities. To address these predicting issues in this research article three machine learning models: Support Vector Regressor (SVR), Multilayer Perceptron (MLP) and Random Forest Regressor (RFR) have been incorporated to forecast the Global Horizontal Irradiance (GHI), Diffused Horizontal Irradiance (DHI), Diffused Normal Irradiance (DNI) based on the spatiotemporal factors. In order to improve the prediction accuracy, the parametric tuning of models has been carried out with the two met heuristic algorithms: Moth Flame Optimization (MFO) and Grey Wolf Optimization (GWO) and also validated with the novel application of Evolve Class Topper Optimization (ECTO) method. Corresponding performance measures, including Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Max Error (ME), and Coefficient of Determination (R2), are employed to evaluate each model's performance. The results obtained through a comparative assessment of all machine learning models confirmed that the ECTO based models have outperformed others and the RFR-ECTO model is the best forecasting model having the highest R2 scores of 0.9441, 0.9107 and 0.8882 and the lowest RMSE value of 75.8613 W/m2, 40.8714 W/m2, 94.8916 W/m2 for GHI, DHI and DNI respectively which ensures that the designed predictive model can be implemented for prediction of solar energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

On request, the data utilised in this work may be made public.

Abbreviations

IEA :

International Energy Agency

IRENA :

International Renewable Energy Agency

PV :

Photovoltaic

GW :

Gigawatt

LR :

Linear Regression

ANN :

Artificial Neural Network

XGB :

Extreme Gradient Boosting

KNN :

K-Nearest Neighbours

GPR :

Gaussian Process Regression

DNN :

Deep Neural Network

PSO :

Particle Swarm Optimization

SVM :

Support Vector Machine

LGBM :

Light Gradient Boosting Machine

NREL :

National Renewable Energy Laboratory

BMA :

Bayesian Model Averaging

ANFIS :

Adaptive Neuro Fuzzy Interface System

MVO :

Multiverse Optimization

FFA :

Firefly Algorithm

IGWO :

Improved Grey Wolf Optimization

SSA :

Salp Swarm Algorithm

WOA :

Whale Optimization Algorithm

References

  1. Guo, Z., Zhou, K., Zhang, C., Lu, X., Chen, W., Yang, S.: Residential electricity consumption behavior: Influencing factors, related theories and intervention strategies. Renew. Sustain. Energy Rev. 81, 399–412 (2018). https://doi.org/10.1016/j.rser.2017.07.046

    Article  Google Scholar 

  2. Zhang, Y., He, C.Q., Tang, B.J., Wei, Y.M.: China’s energy consumption in the building sector: A life cycle approach. Energy Build. 94, 240–251 (2015). https://doi.org/10.1016/J.ENBUILD.2015.03.011

    Article  Google Scholar 

  3. IEA: Global Energy Review: CO2 Emissions in 2021.: Global Emission rebound sharply to highest ever level. (2021). https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2. Accessed 22 Sept 2022

  4. Samadhiya, A., Namrata, K., Kumar, N.: An Experimental Performance Evaluation and Management of a Dual Energy Storage System in a Solar Based Hybrid Microgrid. Arab. J. Sci. Eng. 2022, 1–24 (2022). https://doi.org/10.1007/S13369-022-07023-W

    Article  Google Scholar 

  5. Nourani, V., Elkiran, G., Abdullahi, J., Tahsin, A.: Multi-region Modeling of Daily Global Solar Radiation with Artificial Intelligence Ensemble. Nat. Resour. Res. 28, 1217–1238 (2019). https://doi.org/10.1007/S11053-018-09450-9

    Article  Google Scholar 

  6. Ahmad, T., Zhang, D., Huang, C.: Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications. Energy 231, 120911 (2021). https://doi.org/10.1016/J.ENERGY.2021.120911

    Article  Google Scholar 

  7. Kumar, N., Namrata, K., Samadhiya, A.: Bi-level decision making in techno-economic planning and probabilistic analysis of community based sector-coupled energy system. Appl. Intell. 2022, 1–25 (2022). https://doi.org/10.1007/S10489-022-03794-9

    Article  Google Scholar 

  8. Badescu, V.: A new kind of cloudy sky model to compute instantaneous values of diffuse and global solar irradiance. Theor. Appl. Climatol. 72, 127–136 (2002). https://doi.org/10.1007/s007040200017

    Article  Google Scholar 

  9. Yadav, A.K., Chandel, S.S.: Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sustain. Energy Rev. 33, 772–781 (2014). https://doi.org/10.1016/J.RSER.2013.08.055

    Article  Google Scholar 

  10. Chen, J.L., Li, G.S., Xiao, B.B., Wen, Z.F., Lv, M.Q., Chen, C.D., Jiang, Y., Wang, X.X., Wu, S.J.: Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature. Energy Convers. Manag. 89, 318–329 (2015). https://doi.org/10.1016/J.ENCONMAN.2014.10.004

    Article  Google Scholar 

  11. Mayer, M.J.: Benefits of physical and machine learning hybridization for photovoltaic power forecasting. Renew. Sustain. Energy Rev. 168, 112772 (2022). https://doi.org/10.1016/J.RSER.2022.112772

    Article  Google Scholar 

  12. Jebli, I., Belouadha, F.Z., Kabbaj, M.I., Tilioua, A.: Prediction of solar energy guided by pearson correlation using machine learning. Energy 224, 120109 (2021). https://doi.org/10.1016/J.ENERGY.2021.120109

    Article  Google Scholar 

  13. Benlebna, S., Kumar, N.M., Tahri, A.: Realtime monitoring on the HIT photovoltaic module characteristic parameters at STC, high and low irradiance conditions in Algeria. Procedia Comput. Sci. 132, 1238–1242 (2018). https://doi.org/10.1016/J.PROCS.2018.05.039

    Article  Google Scholar 

  14. Nazir, M.S., Almasoudi, F.M., Abdalla, A.N., Zhu, C., Alatawi, K.S.S.: Multi-objective optimal dispatching of combined cooling, heating and power using hybrid gravitational search algorithm and random forest regression: Towards the microgrid orientation. Energy Rep. 9, 1926–1936 (2023). https://doi.org/10.1016/J.EGYR.2023.01.012

    Article  Google Scholar 

  15. Tu, J., Hu, L., Mohammed, K.J., Le, B.N., Chen, P., Ali, E., Ali, H.E., Sun, L.: Application of logistic regression, support vector machine and random forest on the effects of titanium dioxide nanoparticles using macroalgae in treatment of certain risk factors associated with kidney injuries. Environ. Res. 220, 115167 (2023). https://doi.org/10.1016/J.ENVRES.2022.115167

    Article  Google Scholar 

  16. Moosa, A., Shabir, H., Ali, H., Darwade, R., Gite, B.: Predicting solar radiation using machine learning techniques. In: Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, ICICCS 2018, pp. 1693–1699. Institute of Electrical and Electronics Engineers Inc. (2019)

  17. Husain, S., Khan, U.A.: Machine learning models to predict diffuse solar radiation based on diffuse fraction and diffusion coefficient models for humid-subtropical climatic zone of India. Clean. Eng. Technol. 5, 100262 (2021). https://doi.org/10.1016/J.CLET.2021.100262

    Article  Google Scholar 

  18. Manoj Kumar, N., Subathra, M.S.P.: Three years ahead solar irradiance forecasting to quantify degradation influenced energy potentials from thin film (a-Si) photovoltaic system. Results Phys. 12, 701–703 (2019). https://doi.org/10.1016/J.RINP.2018.12.027

    Article  Google Scholar 

  19. Lee, J., Wang, W., Harrou, F., Sun, Y.: Reliable solar irradiance prediction using ensemble learning-based models: A comparative study. Energy Convers. Manag. 208, 112582 (2020). https://doi.org/10.1016/J.ENCONMAN.2020.112582

    Article  Google Scholar 

  20. Azimi, Y., Talaeian, M., Sarkheil, H., Hashemi, R., Shirdam, R.: Developing an evolving multi-layer perceptron network by genetic algorithm to predict full-scale municipal wastewater treatment plant effluent. J. Environ. Chem. Eng. 10, 108398 (2022). https://doi.org/10.1016/J.JECE.2022.108398

    Article  Google Scholar 

  21. Massaoudi, M., Refaat, S.S., Chihi, I., Trabelsi, M., Oueslati, F.S., Abu-Rub, H.: A novel stacked generalization ensemble-based hybrid LGBM-XGB-MLP model for Short-Term Load Forecasting. Energy 214, 118874 (2021). https://doi.org/10.1016/J.ENERGY.2020.118874

    Article  Google Scholar 

  22. Kumar, P., Nair, G.G.: An efficient classification framework for breast cancer using hyper parameter tuned Random Decision Forest Classifier and Bayesian Optimization. Biomed. Signal Process. Control 68, 102682 (2021). https://doi.org/10.1016/J.BSPC.2021.102682

    Article  Google Scholar 

  23. Fan, J., Zheng, J., Wu, L., Zhang, F.: Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric. Water Manag. 245, 106547 (2021). https://doi.org/10.1016/J.AGWAT.2020.106547

    Article  Google Scholar 

  24. Seyedmohammadi, J., Zeinadini, A., Navidi, M.N., McDowell, R.W.: A new robust hybrid model based on support vector machine and firefly meta-heuristic algorithm to predict pistachio yields and select effective soil variables. Ecol. Inform. 74, 102002 (2023). https://doi.org/10.1016/J.ECOINF.2023.102002

  25. Nguyen, H.D., Truong, G.T., Shin, M.: Development of extreme gradient boosting model for prediction of punching shear resistance of r/c interior slabs. Eng. Struct. 235, 112067 (2021). https://doi.org/10.1016/J.ENGSTRUCT.2021.112067

    Article  Google Scholar 

  26. Li, S., Xu, K., Xue, G., Liu, J., Xu, Z.: Prediction of coal spontaneous combustion temperature based on improved grey wolf optimizer algorithm and support vector regression. Fuel 324, 124670 (2022). https://doi.org/10.1016/J.FUEL.2022.124670

    Article  Google Scholar 

  27. Chia, M.Y., Huang, Y.F., Koo, C.H.: Swarm-based optimization as stochastic training strategy for estimation of reference evapotranspiration using extreme learning machine. Agric. Water Manag. 243, 106447 (2021). https://doi.org/10.1016/J.AGWAT.2020.106447

    Article  Google Scholar 

  28. Bazrafshan, O., Ehteram, M., Dashti Latif, S., Feng Huang, Y., Yenn Teo, F., Najah Ahmed, A., El-Shafie, A.: Predicting crop yields using a new robust Bayesian averaging model based on multiple hybrid ANFIS and MLP models. Ain Shams Eng. J. 13, 101724 (2022). https://doi.org/10.1016/J.ASEJ.2022.101724

    Article  Google Scholar 

  29. Liu, R., Li, G., Wei, L., Xu, Y., Gou, X., Luo, S., Yang, X.: Spatial prediction of groundwater potentiality using machine learning methods with Grey Wolf and Sparrow Search Algorithms. J. Hydrol. 610, 127977 (2022). https://doi.org/10.1016/J.JHYDROL.2022.127977

    Article  Google Scholar 

  30. Bouzateur, I., Bennacer, H., Ouali, M.A., Ziane, M.I., Hadjab, M., Ladjal, M.: A new ANN-PSO framework to chalcopyrite’s energy band gaps prediction. Mater. Today Commun. 34, 105311 (2023). https://doi.org/10.1016/J.MTCOMM.2023.105311

    Article  Google Scholar 

  31. Li, S., Kong, X., Yue, L., Liu, C., Ahmad, M.: Short-term electrical load forecasting using hybrid model of manta ray foraging optimization and support vector regression. J. Clean. Prod. 388, 135856 (2023). https://doi.org/10.1016/j.jclepro.2023.135856

    Article  Google Scholar 

  32. Kabir, M.F., Chen, T., Ludwig, S.A.: A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction. Healthc. Anal. 3, 100125 (2023). https://doi.org/10.1016/J.HEALTH.2022.100125

    Article  Google Scholar 

  33. Zhou, J., Dai, Y., Tao, M., Khandelwal, M., Zhao, M., Li, Q.: Estimating the mean cutting force of conical picks using random forest with salp swarm algorithm. Results Eng. 17, 100892 (2023). https://doi.org/10.1016/J.RINENG.2023.100892

  34. Hashem Samadi, S., Ghobadian, B., Nosrati, M., Rezaei, M.: Investigation of factors affecting performance of a downdraft fixed bed gasifier using optimized MLP neural networks approach. Fuel 333, 126 (2023). https://doi.org/10.1016/J.FUEL.2022.126249

    Article  Google Scholar 

  35. NSRDB: National Solar Radiation Database (NSRDB:NREL). https://nsrdb.nrel.gov/data-viewer/query/query-tools. Accessed 10 Sept 2022

  36. Sun, L., Wang, T., Ding, W., Xu, J., Lin, Y.: Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification. Inf. Sci. (Ny) 578, 887–912 (2021). https://doi.org/10.1016/J.INS.2021.08.032

    Article  MathSciNet  Google Scholar 

  37. Salem, O.A.M., Liu, F., Chen, Y.P.P., Hamed, A., Chen, X.: Fuzzy joint mutual information feature selection based on ideal vector. Expert Syst. Appl. 193, 116453 (2022). https://doi.org/10.1016/J.ESWA.2021.116453

    Article  Google Scholar 

  38. Cortes, C., Vapnik, V., Saitta, L.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  39. Deo, R.C., Wen, X., Qi, F.: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl. Energy. 168, 568–593 (2016). https://doi.org/10.1016/J.APENERGY.2016.01.130

    Article  Google Scholar 

  40. Lima, M.A.F.B., Carvalho, P.C.M., Fernández-Ramírez, L.M., Braga, A.P.S.: Improving solar forecasting using Deep Learning and Portfolio Theory integration. Energy 195, 117016 (2020). https://doi.org/10.1016/J.ENERGY.2020.117016

    Article  Google Scholar 

  41. Mellit, A., Pavan, A.M.: A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste. Italy. Sol. Energy. 84, 807–821 (2010). https://doi.org/10.1016/J.SOLENER.2010.02.006

    Article  Google Scholar 

  42. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  43. Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/J.KNOSYS.2015.07.006

    Article  Google Scholar 

  44. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf Optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mantosh Kumar has collected and analysed the data along with computation and mathematical modelling for the methodology adopted. Kumari Namrata supervised the project and formatted the manuscript. Nishant Kumar and Gaurav Saini have worked in optimization technique formulation and also assisted in editing and formulating the manuscript.

Corresponding author

Correspondence to Kumari Namrata.

Ethics declarations

Ethics Approval and Consent to participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

Authors have no competing interests associated with this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Namrata, K., Kumar, N. et al. Solar Irradiance Prediction Using an Optimized Data Driven Machine Learning Models. J Grid Computing 21, 28 (2023). https://doi.org/10.1007/s10723-023-09668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-023-09668-9

Keywords

Navigation