Skip to main content

Advertisement

Log in

Edge Computing with Fog-cloud for Heart Data Processing using Particle Swarm Optimized Deep Learning Technique

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Chronic illnesses such as heart disease, diabetes, cancer, and respiratory diseases are complex and pose a significant threat to global health. Processing heart data is particularly challenging due to the variability of symptoms. However, advancements in smart wearable devices, computing technologies, and IoT solutions have made heart data processing easier. This proposed model integrates Edge-Fog-Cloud computing to provide rapid and accurate results, making it a promising solution for heart data processing. Patient data is collected using hardware components, and cardiac feature extraction is used to obtain crucial features from data signals. The Optimized Cascaded Convolution Neural Network (CCNN) processes these features, and the CCNN's hyperparameters are optimized using both PSO (Particle Swarm Optimization) and GSO(Galactic Swarm Optimization) techniques. The proposed system leverages the strengths of both optimization algorithms to improve the accuracy and efficiency of the heart data processing system. The GSO-CCNN optimizes the CCNN's hyperparameters, while the PSO-CCNN optimizes the feature selection process. Combining both algorithms enhances the system's ability to identify relevant features and optimize the CCNN's architecture. Performance analysis demonstrates that the proposed technique, which integrates Edge-Fog-Cloud computing with combined PSO-CCNN and GSO-CCNN techniques, outperforms traditional models such as PSO-CCNN, GSO-CCNN, WOA-CCNN, and DHOA-CCNN, which utilize traditional cloud and edge technologies. The proposed model is evaluated in terms of time, energy consumption, bandwidth, and the standard performance metrics of accuracy, precision, recall, specificity, and F1-score. Therefore, the proposed system's comparative analysis ensures its efficiency over conventional models for heart data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Raju, K.B., Dara, S., Vidyarthi, A., Gupta, V.M., Khan, B.: Smart heart disease prediction system with IoT and fog computing sectors enabled by cascaded deep learning model. Comput. Intell. Neurosci.. Intell. Neurosci. 2022, 1 (2022)

    Article  Google Scholar 

  2. Mutlag, A.A., Abd Ghani, M.K., Arunkumar, N.A., Mohammed, M.A., Mohd, O.: Enabling technologies for fog computing in healthcare IoT systems. Futur. Gener. Comput. Syst. 90, 62–78 (2019)

    Article  Google Scholar 

  3. Bourechak, A., Zedadra, O., Kouahla, M.N., Guerrieri, A., Seridi, H., Fortino, G.: At the confluence of artificial intelligence and edge computing in IoT-based applications: A review and new perspectives. Sensors 23(3), 1639 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Al Bataineh, A., Manacek, S.: MLP-PSO hybrid algorithm for heart disease prediction. J. Personalized Med. 12(8), 1208 (2022)

    Article  Google Scholar 

  5. Tuli, S., Basumatary, N., Gill, S.S., Kahani, M., Arya, R.C., Wander, G.S., Buyya, R.: HealthFog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated IoT and fog computing environments. Futur. Gener. Comput. Syst. 104, 187–200 (2020)

    Article  Google Scholar 

  6. Sarmah, S.S.: An efficient IoT-based patient monitoring and heart disease prediction system using deep learning modified neural network. IEEE access 8, 135784–135797 (2020)

    Article  Google Scholar 

  7. Zhang, X., Wen, S., Yan, L., Feng, J., Xia, Y.: A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction. Comput. J. c171 (2022)

  8. Zheng, Y., Li, L., Qian, L., Cheng, B., Hou, W., ... Zhuang, Y: Sine-SSA-BP ship trajectory prediction based on chaotic mapping improved sparrow search algorithm. Sensors. 23(2), 704 (2023)

  9. Pan, Y., Fu, M., Cheng, B., Tao, X., Guo, J.: Enhanced deep learning assisted convolutional neural network for heart disease prediction on the internet of medical things platform. IEEE Access 8, 189503–189512 (2020)

    Article  Google Scholar 

  10. Dutta, A., Batabyal, T., Basu, M., Acton, S.T.: An efficient convolutional neural network for coronary heart disease prediction. Expert Syst. Appl. 159, 113408 (2020)

    Article  Google Scholar 

  11. Abdel-Basset, M., Hawash, H., Chakrabortty, R.K., Ryan, M.: Energy-net: a deep learning approach for smart energy management in iot-based smart cities. IEEE Internet Things J. 8(15), 12422–12435 (2021)

    Article  Google Scholar 

  12. Chen, J., Wang, Q., Cheng, H.H., Peng, W., Xu, W.: A review of vision-based traffic semantic understanding in ITSs. IEEE Trans. Intell. Transp. Syst.Intell. Transp. Syst. 23(11), 19954–19979 (2022)

    Article  Google Scholar 

  13. Fitriyani, N.L., Syafrudin, M., Alfian, G., Rhee, J.: HDPM: an effective heart disease prediction model for a clinical decision support system. IEEE Access 8, 133034–133050 (2020)

    Article  Google Scholar 

  14. Wang, Y., Han, X., Jin, S.: MAP based modeling method and performance study of a task offloading scheme with time-correlated traffic and VM repair in MEC systems. Wirel. Netw. 29, 47 (2022)

    Article  CAS  Google Scholar 

  15. Dai, X., Xiao, Z., Jiang, H., Alazab, M., Lui, J. C. S., Min, G., ... Liu, J: Task offloading for cloud-assisted fog computing with dynamic service caching in enterprise management systems. IEEE Trans. Ind. Inform. 19(1), 662–672 (2023)

  16. Dai, X., Xiao, Z., Jiang, H., Alazab, M., Lui, J. C. S., Dustdar, S., ... Liu, J: Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things. IEEE Trans. Ind. Inform. 19(1), 480–490 (2023)

  17. Jiang, H., Dai, X., Xiao, Z., Iyengar, A.K.: Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. (2022)

  18. Dai, X., Xiao, Z., Jiang, H., Lui, J.C.S.: UAV-assisted task offloading in vehicular edge computing networks. IEEE Trans. Mob. Comput. (2023)

  19. Li, J., Deng, Y., Sun, W., Li, W., Li, R., Li, Q., ... Liu, Z.: Resource orchestration of cloud-edge–based smart grid fault detection. ACM Trans. Sen. Netw. 18(3) (2022)

  20. Qu, Z., Zhang, Z., Liu, B., Tiwari, P., Ning, X., ... Muhammad, K.: Quantum detectable Byzantine agreement for distributed data trust management in blockchain. Inform. Sci. 637, 118909 (2023)

  21. Wu, H., Jin, S., Yue, W.: Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. J. Syst. Sci. Syst. Eng. 31(2), 133–149 (2022)

    Article  Google Scholar 

  22. Wang, K., Zhang, B., Alenezi, F., Li, S.: Communication-efficient surrogate quantile regression for non-randomly distributed system. Inform. Sci. 588, 425–441 (2022)

    Article  Google Scholar 

  23. Repaka, A.N., Ravikanti, S.D., Franklin, R.G.: Design and implementing heart disease prediction using naives Bayesian. In 2019 3rd International conference on trends in electronics and informatics (ICOEI) (pp. 292–297). IEEE (2019)

  24. Wu, Z., Cao, J., Wang, Y., Wang, Y., Zhang, L., ... Wu, J.: hPSD: A Hybrid PU-learning-based spammer detection model for product reviews. IEEE Trans. Cybernet. 50(4), 1595–1606 (2020)

  25. Bao, N., Zhang, T., Huang, R., Biswal, S., Su, J., Wang, Y., ... Cha, Y.: A deep transfer learning network for structural condition identification with limited real-world training Data. Struct. Control Health Monit. 2023, 8899806 (2023)

  26. Fang, Y., Luo, B., Zhao, T., He, D., Jiang, B., Liu, Q.: ST-SIGMA: Spatio-temporal semantics and interaction graph aggregation for multi-agent perception and trajectory forecasting. CAAI Trans. Intell. Technol. 7(4), 744–757 (2022)

    Article  Google Scholar 

  27. Zheng, M., Zhi, K., Zeng, J., Tian, C., You, L.: A hybrid CNN for image denoising. J. Artif. Intell. Technol. 2(3), 93–99 (2022)

    Google Scholar 

  28. Das, S.K., Namasudra, S., Kumar, A., Moparthi, N.R.: AESPNet: Attention enhanced stacked parallel network to improve automatic diabetic foot ulcer identification. Image Vis. Comput. 138, 104809 (2023)

    Article  Google Scholar 

  29. Wang, M., Yi, H., Jiang, F., Lin, L., Gao, M.: Review on offloading of vehicle edge computing. J. Artific. Intell. Technol. (2022)

  30. Devi, D., Namasudra, S., Kadry, S.: A boosting-aided adaptive cluster-based undersampling approach for treatment of class imbalance problem. Int. J. Data Warehous. Min. (IJDWM) 16(3), 60–86 (2020)

    Article  Google Scholar 

  31. Huong, A., Tay, K., Gan, K., Ngu, X.: A hierarchical optimisation framework for pigmented lesion diagnosis. CAAI Trans. Intell. Technol. 7(1), 34–45 (2022)

    Article  Google Scholar 

  32. Manjari, K., Verma, M., Singal, G., Namasudra, S.: QEST: Quantized and efficient scene text detector using deep learning. ACM Trans. Asian Low-Resour. Language Inform. Process. 22(5), 1–18 (2023)

    Article  Google Scholar 

  33. Liao, Q., Chai, H., Han, H., Zhang, X., Wang, X., Xia, W., ... Ding, Y: An integrated multi-task model for fake news detection. IEEE Trans. Knowl. Data Eng. 34(11) (2022)

  34. Jiang, S., Zhao, C., Zhu, Y., Wang, C., Du, Y., Lei, W.,... Wang, L.: A practical and economical ultra-wideband base station placement approach for indoor autonomous driving systems. J. Adv. Transp. 2022, 1–12 (2022)

  35. Ni, Q., Guo, J., Wu, W., Wang, H.: Influence-based community partition with sandwich method for social networks. IEEE Trans. Comput. Soc. Syst. 1–12 (2022)

  36. Ni, Q., Guo, J., Wu, W., Wang, H., Wu, J.: Continuous influence-based community partition for social networks. IEEE Trans. Netw. Sci. Eng. 9(3), 1187–1197 (2022)

    Article  MathSciNet  Google Scholar 

  37. Zhou, G., Zhang, R., Huang, S.: Generalized buffering algorithm. IEEE Access 9, 27140–27157 (2021)

    Article  Google Scholar 

  38. She, Q., Hu, R., Xu, J., Liu, M., Xu, K., ... Huang, H.: Learning high-DOF reaching-and-grasping via dynamic representation of gripper-object interaction. ACM Trans. Graph. 41(4) (2022)

  39. Yuan, H., Yang, B.: System dynamics approach for evaluating the interconnection performance of cross-border transport infrastructure. J. Manag. Eng. 38(3) (2022)

  40. Zhang, J., Liu, Y., Li, Z., Lu, Y.: Forecast-assisted service function chain dynamic deployment for SDN/NFV-enabled cloud management systems. IEEE Syst. J. (2023)

  41. Zhao, K., Jia, Z., Jia, F., Shao, H.: Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine. Eng. Appl. Artif. Intell. 120, 105860 (2023)

    Article  Google Scholar 

  42. Huang, F., Wang, Z., Huang, X., Qian, Y., Li, Z., ... Chen, H.: Aligning distillation for cold-start item recommendation. Paper presented at the SIGIR '23, New York, NY, USA (2023)

  43. Cheng, Y., Lan, S., Fan, X., Tjahjadi, T., Jin, S., ... Cao, L.: A dual-branch weakly supervised learning based network for accurate mapping of woody vegetation from remote sensing images. Int. J. Appl. Earth Observ. Geoinform. 124, 103499 (2023)

  44. Zhang, H., Mi, Y., Liu, X., Zhang, Y., Wang, J., ... Tan, J.: A differential game approach for real-time security defense decision in scale-free networks. Comput. Netw. 224, 109635 (2023)

  45. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D., ... Chen, J.: Situation-aware dynamic service coordination in an IoT environment. IEEE/ACM Trans. Netw. 25(4), 2082–2095 (2017)

  46. Tang, Y., Liu, S., Deng, Y., Zhang, Y., Yin, L., ... Zheng, W.: An improved method for soft tissue modeling. Biomed. Sig. Process. Control 65 (2021)

  47. Lu, S., Yang, B., Xiao, Y., Liu, S., Liu, M., Yin, L., ... Zheng, W.: Iterative reconstruction of low-dose CT based on differential sparse. Biomed. Sig. Process. Control 79, 104204 (2023)

  48. Lu, S., Yang, J., Yang, B.: Analysis and design of surgical instrument localization algorithm. Comput. Model. Eng. Sci.. Model. Eng. Sci. 137(1), 669–685 (2023)

    Google Scholar 

  49. Lv, Z., Wu, J., Li, Y., Song, H.: Cross-layer optimization for industrial internet of things in real scene digital twins. IEEE Internet Things J. 9(17), 15618–15629 (2022)

    Article  Google Scholar 

  50. Xiao, Z., Fang, H., Jiang, H., Bai, J., Havyarimana, V., Chen, H., ... Jiao, L.: Understanding private car aggregation effect via spatio-temporal analysis of trajectory data. IEEE Trans. Cybernet. 53(4), 2346–2357 (2023)

  51. Yan, L., Yin-He, S., Qian, Y., Zhi-Yu, S., Chun-Zi, W., ... Zi-Yun, L: Method of reaching consensus on probability of food safety based on the integration of finite credible data on block chain. IEEE Access 9, 123764–123776 (2021)

  52. Zong, C., Wan, Z.: Container ship cell guide accuracy check technology based on improved 3d point cloud instance segmentation. Brodogradnja 73(1), 23–35 (2022)

    Article  Google Scholar 

  53. Chen, Y.: Research on collaborative innovation of key common technologies in new energy vehicle industry based on digital twin technology. Energy Rep. 8, 15399–15407 (2022)

    Article  Google Scholar 

  54. Chen, B., Hu, J., Zhao, Y., Ghosh, B.K.: Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man, Cybernet.: Syst. 52(10), 6618–6629 (2022)

    Article  Google Scholar 

  55. Peng, Y., Zhao, Y., Hu, J.: On the role of community structure in evolution of opinion formation: A new bounded confidence opinion dynamics. Inform. Sci. 621, 672–690 (2023)

    Article  Google Scholar 

  56. Jiang, Y., Liu, S., Li, M., Zhao, N., Wu, M.: A new adaptive co-site broadband interference cancellation method with auxiliary channel. Digit. Commun. Netw (2022)

  57. Chen, G., Chen, P., Huang, W., Zhai, J.: Continuance intention mechanism of middle school student users on online learning platform based on qualitative comparative analysis method", Math. Probl. Eng. (2022)

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

Sheng Chai: Conceptualization, Methodology, Formal analysis, Supervision, Writing—original draft, Writing—review & editing. Lantian Guo: Writing—original draft, Writing—review & editing, Investigation, Data Curation, Validation, Resources, Writing—review & editing.

Corresponding author

Correspondence to Sheng Chai.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, S., Guo, L. Edge Computing with Fog-cloud for Heart Data Processing using Particle Swarm Optimized Deep Learning Technique. J Grid Computing 22, 3 (2024). https://doi.org/10.1007/s10723-023-09706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-023-09706-6

Keywords

Navigation