Skip to main content

Advertisement

Log in

Deep Learning Based Entropy Controlled Optimization for the Detection of Covid-19

  • Research
  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

Emerging technological advancements open the door for employing deep learning-based methods in practically all spheres of human endeavor. Because of their accuracy, deep learning algorithms can be used in healthcare to categorize and identify different illnesses. The recent coronavirus (COVID-19) outbreak has significantly strained the global medical system. By using medical imaging and PCR testing, COVID-19 can be diagnosed. Since COVID-19 is highly transmissible, it is generally considered secure to analyze it with a chest X-ray. To distinguish COVID-19 infections from additional infections that are not COVID-19 infections, a deep learning-based entropy-controlled whale optimization (EWOA) with Transfer Learning is suggested in this paper. The created system comprises three stages: a preliminary processing phase to remove noise effects and resize the image, then a deep learning architecture using a pre-trained model to extract features from the pre-processed image. After extracting the features, optimization is carried out. EWOA is utilized to combine and optimize the optimum features. A softmax layer is used to reach the final categorization. Various activation functions, thresholds, and optimizers are used to assess the systems. Numerous metrics for performance are utilized to measure the performance of the offered methodologies for assessment. Through an accuracy of 97.95%, the suggested technique accurately categorizes four classes, including COVID-19, viral pneumonia, chest infection, and routine. Compared to current methodologies found in the literature, the proposed technique exhibits advantages regarding accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Khan, E., et al.: Chest X-ray classification for the detection of COVID-19 using deep learning techniques. Sensors 22(3), 1211 (2022)

    Article  Google Scholar 

  2. AbdElhamid, A.A., et al.: Multi-classification of chest X-rays for COVID-19 diagnosis using deep learning algorithms. Appl. Sci. 12(4), 2080 (2022)

    Article  MathSciNet  Google Scholar 

  3. Mahmoudi, R., et al.: A deep learning-based diagnosis system for COVID-19 detection and pneumonia screening using CT imaging. Appl. Sci. 12(10), 4825 (2022)

    Article  Google Scholar 

  4. Zahoor, S., Shoaib, U., Lali, I.U.: Breast cancer mammograms classification using deep neural network and entropy-controlled whale optimization algorithm. Diagnostics 12(2), 557 (2022)

    Article  Google Scholar 

  5. Wang, W., Xu, Y., Gao, R., Lu, R., Han, K., Wu, G., Tan, W.: Detection of SARS-CoV-2 in different types of clinical specimens. JAMA 323, 1843–1844 (2020)

    Google Scholar 

  6. Paules, C.I., Marston, H.D., Fauci, A.S.: Coronavirus infections—More than just the common cold. JAMA 323, 707–708 (2020)

    Article  Google Scholar 

  7. Iqbal, H.M., Romero-Castillo, K.D., Bilal, M., Parra-Saldivar, R.: The emergence of novel-coronavirus and its replication cycle-an overview. J. Pure Appl. Microbiol. 14, 13–16 (2020)

    Article  Google Scholar 

  8. Ji, T., Liu, Z., Wang, G., Guo, X., Lai, C., Chen, H., Huang, S., Xia, S., Chen, B., Jia, H., et al.: Detection of COVID-19: A review of the current literature and future perspectives. Biosens. Bioelectron. 166, 112455 (2020)

    Article  Google Scholar 

  9. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., et al.: A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020)

    Article  Google Scholar 

  10. Petrovska, B., Zdravevski, E., Lameski, P., Corizzo, R., Štajduhar, I., Lerga, J.: Deep learning for feature extraction in remote sensing: A case-study of aerial scene classification. Sensors 20, 3906 (2020)

    Article  Google Scholar 

  11. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. Pattern Anal. Appl. 24, 1–14 (2021)

    Article  Google Scholar 

  12. Rehman, Z.U., Khan, M.A., Ahmed, F., Damaševiˇcius, R., Naqvi, S.R., Nisar, W., Javed, K.: Recognizing apple leaf diseases using a novel parallel real-time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture. IET Image Process. 15, 2157–2168 (2021)

    Article  Google Scholar 

  13. Khan, M.A., Khan, M.A., Ahmed, F., Mittal, M., Goyal, L.M., Hemanth, D.J., Satapathy, S.C.: Gastrointestinal diseases segmentation and classification based on duo-deep architectures. Pattern Recognit. Lett 131, 193–204 (2020)

    Article  Google Scholar 

  14. Rehman, M.U., Ahmed, F., Khan, M.A., Tariq, U., Alfouzan, F.A., Alzahrani, N.M., Ahmad, J.: Dynamic hand gesture recognition using 3D-CNN and LSTM networks. Comput. Mater. Contin 70, 4675–4690 (2020)

    Google Scholar 

  15. Majhi, B., Thangeda, R., Majhi, R.: A Review on Detection of COVID-19 Patients Using Deep Learning Techniques. In: Assessing COVID-19 and Other Pandemics and Epidemics using Computational Modelling and Data Analysis, pp. 59–74. Springer, Berlin/Heidelberg, Germany (2022)

  16. Kanne, J.P., Little, B.P., Chung, J.H., Elicker, B.M., Ketai, L.H.: Essentials for radiologists on COVID-19: An update—radiology scientific expert panel. Radiology 296, E113–E114 (2020)

    Article  Google Scholar 

  17. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., Ji, W.: Sensitivity of chest CT for COVID-19: Comparison to RT-PCR. Radiology 296, E115–E117 (2020)

    Article  Google Scholar 

  18. Van Kasteren, P.B., van Der Veer, B., van den Brink, S., Wijsman, L., de Jonge, J., van den Brandt, A., Molenkamp, R., Reusken, C.B., Meijer, A.: Comparison of seven commercial RT-PCR diagnostic kits for COVID-19. J. Clin. Virol. 128, 104412 (2020)

    Article  Google Scholar 

  19. Apostolopoulos, I.D., Aznaouridis, S.I., Tzani, M.A.: Extracting possibly representative COVID-19 Biomarkers from X-Ray images with Deep Learning approach and image data related to Pulmonary Diseases. J. Med Biol. Eng. 40, 462–469 (2020)

    Article  Google Scholar 

  20. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: Automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 43, 1 (2020)

    Article  Google Scholar 

  21. Akter, S., Shamrat, F., Chakraborty, S., Karim, A., Azam, S.: COVID-19 detection using deep learning algorithm on chest X-ray images. Biology 10, 1174 (2021)

    Article  Google Scholar 

  22. Oh, Y., Park, S., Ye, J.C.: Deep learning covid-19 features on cxr using limited training data sets. IEEE Trans. Med. Imaging 39, 2688–2700 (2020)

    Article  Google Scholar 

  23. Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Wang, X.: Deep learning-based detection for COVID-19 from chest CT using weak label. IEEE Trans. Med. Imaging 39, 2615–2625 (2020)

    Google Scholar 

  24. Abbas, A., Abdelsamea, M.M., Gaber, M.M.: Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell. 51, 854–864 (2021)

    Article  Google Scholar 

  25. Rahaman, M.M., Li, C., Yao, Y., Kulwa, F., Rahman, M.A., Wang, Q., Qi, S., Kong, F., Zhu, X., Zhao, X.: Identification of COVID-19 samples from chest X-ray images using deep learning: A comparison of transfer learning approaches. J. X-ray Sci. Technol. 28, 821–839 (2020)

    Google Scholar 

  26. Yamaç, M., Ahishali, M., Degerli, A., Kiranyaz, S., Chowdhury, M.E., Gabbouj, M.: Convolutional sparse support estimator-based COVID-19 recognition from X-Ray images. IEEE Trans. Neural Netw. Learn. Syst. 32, 1810–1820 (2021)

    Article  Google Scholar 

  27. Loey, M., Smarandache, F., Khalifa, N.E.M.: Within the lack of COVID-19 benchmark dataset: A novel gan with deep transfer learning for corona-virus detection in chest X-ray images. Symmetry 12, 651 (2020)

    Article  Google Scholar 

  28. Khan, A.I., Shah, J.L., Bhat, M.M.: CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images. Comput. Methods Programs Biomed. 196, 105581 (2020)

    Article  Google Scholar 

  29. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., Ji, W.: Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology 296, 2020200432 (2020)

    Article  Google Scholar 

  30. Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W., Tao, Q., Sun, Z., Xia, L.: Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 296, E32–E40 (2020)

    Article  Google Scholar 

  31. Dong, D., Tang, Z., Wang, S., Hui, H., Gong, L., Lu, Y., Xue, J., Liao, H., Chen, F., Yang, F., et al.: The role of imaging in the detection and management of COVID-19: a review. IEEE Rev. Biomed. Eng. 14, 16–29 (2020)

    Article  Google Scholar 

  32. Liu, R., Ren, C., Fu, M., Chu, Z., Guo, J.: Platelet Detection Based on Improved YOLO_v3. Cyborg Bionic Syst. 2022, 9780569 (2022)

  33. Xie, X., Wang, X., Liang, Y., Yang, J., Wu, Y., Li, L., Shi, X.: Evaluating cancer-related biomarkers based on pathological images: a systematic review. Front. Oncol. 11, 763527 (2021)

  34. Huo, R., Liu, Y., Xu, H., Li, J., Xin, R., Xing, Z., Deng, S., Wang, T., Yuan, H., Zhao, X.: Associations between carotid atherosclerotic plaque characteristics determined by magnetic resonance imaging and improvement of cognition in patients undergoing carotid endarterectomy. Quant. Imaging Med. Surg. 12(5), 2891–2903 (2022)

    Article  Google Scholar 

  35. Si, X., He, H., Yu, J., Ming, D.: Cross-subject emotion recognition brain-computer interface based on fNIRS and DBJNet. Cyborg Bionic Syst. 4, 45 (2023)

    Article  Google Scholar 

  36. Huang, H., Wu, N., Liang, Y., Peng, X., Shu, J.: SLNL: A novel method for gene selection and phenotype classification. Int. J. Intell. Syst. 37(9), 6283–6304 (2022)

    Article  Google Scholar 

  37. Qiu, L., Yu, R., Hu, F., Zhou, H., Hu, H.: How can China’s medical manufacturing listed firms improve their technological innovation efficiency? An analysis based on a three-stage DEA model and corporate governance configurations. Technol. Forecast. Soc. Chang. 194, 122684 (2023)

    Article  Google Scholar 

  38. COVID-CXNet.: Available online: https://github.com/armiro/COVID-CXNet (2020). Accessed 20 Nov 2021

  39. Kaggle.: RSNA Pneumonia Detection Challenge. https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data. Accessed 20 Nov 2021

  40. Mooney, P.: Chest X-ray Images (Pneumonia). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia 2018. Accessed 20 Nov 2021

  41. Duong, L.T., Nguyen, P.T., Iovino, L., Flammini, M.: Automatic detection of Covid-19 from chest X-ray and lung computed tomography images using deep neural networks and transfer learning. Appl. Soft Comput. 132, 109851 (2023)

    Article  Google Scholar 

  42. Hassan, M.K., Ariffin, S.H.S., Syed-Yusof, S.K., Ghazali, N.E., Kanona, M.E., Mohamed, K.S., Khairi, M.H., Hamdan, M.: DLVisor: Dynamic Learning Hypervisor for Software Defined Network. IEEE Access 11, 84144–84167 (2023)

  43. Chen, L., Fan, H., Zhu, H.: Multi-objective optimization of cancer treatment using the multi-objective gray wolf optimizer (MOGWO), pp. 1–10. Multiscale and Multidisciplinary Modeling, Experiments and Design (2023)

    Google Scholar 

  44. Avazzadeh, Z., Hassani, H., Agarwal, P., Mehrabi, S., Ebadi, M.J., Dahaghin, M.S.: An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials. Soft. Comput. 27(14), 9519–9531 (2023)

    Article  Google Scholar 

  45. Doumari, S.A., Berahmand, K., Ebadi, M.J.: Early and high-accuracy diagnosis of parkinson’s disease: outcomes of a new model. Comput. Math. Methods Med. 2023, 1493676 (2023)

  46. Chowdhury, M.E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B., Islam, K.R., Khan, M.S., Iqbal, A., al Emadi, N., et al.: Can AI help in screening viral and COVID-19 pneumonia? IEEE Access 8, 132665–132676 (2020)

    Article  Google Scholar 

  47. COVID-19.: Radiography Database-Kaggle. Available online: https://www.kaggle.com/tawsifurrahman/covid19-radiography-database. Accessed on 20 Nov 2021

  48. BIMCV-COVID-19.: Datasets Related to COVID-19’s Pathology Course. Available online: https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/#1590858128006-9e640421-6711 (2020). Accessed on 20 Nov 2021

  49. COVID-19-Image-Repository.: Available online: https://github.com/ml-workgroup/covid-19-image-repository/tree/master/png (2020). Accessed on 20 Nov 2021

  50. Chen, R., Liang, W., Jiang, M., Guan, W., Zhan, C., Wang, T., Tang, C., Sang, L., Liu, J., Ni, Z., et al.: Risk factors of fatal outcome in hospitalized subjects with coronavirus disease 2019 from a nationwide analysis in China. Chest 158, 97–105 (2020)

    Article  Google Scholar 

  51. Weng, Z., Chen, Q., Li, S., Li, H., Zhang, Q., Lu, S., Wu, L., Xiong, L., Mi, B., Liu, D., et al.: ANDC: an early warning score to predict mortality risk for patients with Coronavirus Disease 2019. J. Transl. Med. 18, 328 (2020)

    Article  Google Scholar 

  52. Liu, J., Liu, Y., Xiang, P., Pu, L., Xiong, H., Li, C., Zhang, M., Tan, J., Xu, Y., Song, R., et al.: Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 18(1), 206 (2020)

  53. Huang, I., Pranata, R.: Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intens. Care 8, 36 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Aisha M. Alqahtani from Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R52), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Jiong Chen: Conceptualization, Methodology, Formal analysis, Supervision, Writing—original draft, Writing—review & editing.

Abdullah Alshammari: Investigation, Data Curation, Validation, Resources, Writing—review & editing.

Mohammed Alonazi: Writing—original draft, Writing—review & editing.

Aisha M. Alqahtani: Data Curation, Validation, Resources, Writing—review & editing.

Sara A Althubiti: Validation, Resources, Writing—review & editing.

Romi Fadillah Rahmat: Writing—original draft, Writing—review & editing.

Corresponding author

Correspondence to Jiong Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Alshammari, A., Alonazi, M. et al. Deep Learning Based Entropy Controlled Optimization for the Detection of Covid-19. J Grid Computing 22, 53 (2024). https://doi.org/10.1007/s10723-024-09766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10723-024-09766-2

Keywords