Abstract
Designing a low-budget lightweight motorcycle frame with superior dynamic and mechanical properties is a complex engineering problem. This complexity is due in part to the presence of multiple design objectives—mass, structural stress and rigidity—, the high computational cost of the finite element (FE) simulations used to evaluate the objectives, and the nature of the design variables in the frame’s geometry (discrete and continuous). Therefore, this paper presents a neuroacceleration strategy for multiobjective evolutionary algorithms (MOEAs) based on the combined use of real (FE simulations) and approximate fitness function evaluations. The proposed approach accelerates convergence to the Pareto optimal front (POF) comprised of nondominated frame designs. The proposed MOEA uses a mixed genotype to encode discrete and continuous design variables, and a set of genetic operators applied according to the type of variable. The results show that the proposed neuro-accelerated MOEAs, NN-NSGA II and NN-MicroGA, improve upon the performance of their original counterparts, NSGA II and MicroGA. Thus, this neuroacceleration strategy is shown to be effective and probably applicable to other FE-based engineering design problems.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abe, A., Kamegawa, T., Nakajima, Y.: Optimization of construction of tire reinforcement by genetic algorithm. Optim. Eng. 5(1), 77–92 (2004)
Ansys Inc.: Release 10.0 documentation for ANSYS. Ansys Inc., Canonsburg, PA (2005)
Avallone, E.A., Baumeister, T.: Marks’ Standard Handbook for Mechanical Engineers. McGraw–Hill, New York (1997)
Bäck, T.: Optimal mutation rates in genetic search. In: Forrest, S. (ed.) Proceedings of the 5th International Conference on Genetic Algorithms, pp. 2–8. Morgan Kaufmann, San Francisco (1993)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)
Bui, L., Abbass, H., Essam, D.: Fitness inheritance for noisy evolutionary multi-objective optimization. In: Proceedings of Genetic and Evolutionary Computation Conference (GECCO-2005), pp. 779–785. ACM, New York (2005)
Calderón, B.: Diseño y construcción de un chasis tubular para un vehículo experimental. Senior design project, Universidad de los Andes, Bogotá, Colombia (2004)
Chafekar, D., Shi, L., Rasheed, K., Xuan, J.: Multiobjective GA optimization using reduced models. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 35(2), 261–265 (2005)
Coello, C.A.: A short tutorial on evolutionary multiobjective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A., Corne, D. (eds.) Evolutionary Multi-Criterion Optimization, pp. 21–40. Springer, Washington (2001)
Coello, C.A., Toscano, G.: Multiobjective structural optimization using a micro-genetic algorithm. Struct. Multidiscip. Optim. 30(5), 388–403 (2005)
Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic, New York (2002)
Deb, K., Beyer, H.G.: Self-adaptive genetic algorithms with simulated binary crossover. Evol. Comput. 9(2), 197–221 (2001)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Trans. Evol. Comput. 30(1), 54–65 (2002)
Di Barba, P., Farina, M., Savini, A.: Multiobjective design optimization of real-life devices in electrical engineering: A cost-effective evolutionary approach. In: Zitzler, E., Deb, K., Thiele, L., Coello, C.A., Corne, D. (eds.) Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization. Lecture Notes in Evolutionary Computation, vol. 1993, pp. 560–573. Springer, Berlin (2001)
Farina, M., Amato, P.: Linked interpolation-optimization strategies for multicriteria optimization problems. Soft Comput. 9, 54–65 (2005)
Fasel, U., Konig, O., Wintermantel, M., Ermanni, P.: Using evolutionary methods with a heterogeneous genotype representation for design optimization of a tubular steel trellis motor bike frame. Technical report, Swiss Federal Institute of Technology, 2003. Available online at: www.felyx.surceforge.net (accessed 19 October 2006)
Fawaz, Z., Xu, Y.G., Behdinan, K.: A hybrid evolutionary algorithm and application to structural optimization. Struct. Multidiscip. Optim. 30(3), 219–226 (2005)
Foale, T.: Motorcycle Handling and Chassis Design: The Art and Science. Tony Foale Designs, Madrid (2002)
Giger, M., Ermanni, P.: Development of CFRP racing motorcycle rims using a heuristic evolutionary algorithm approach. Struct. Multidiscip. Optim. 30(1), 54–65 (2005)
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 9(1), 3–12 (2005)
Knowles, J.: ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput. 10(1), 50–66 (2006)
Knowles, J., Corne, D.: The Pareto archived evolution strategy: A new baseline algorithm for multiobjective optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, pp. 98–105. IEEE Press, Piscataway (1999)
Kursawe, F.: A variant of evolution strategies for vector optimization. In: Parallel Problem Solving from Nature, pp. 93–197. Springer, Berlin (1990)
Lagaros, N., Charmpis, D., Papadrakakis, M.: An adaptive neural network strategy for improving the computational performance of evolutionary structural optimization. Comput. Methods Appl. Mech. Eng. 194, 3374–3393 (2005)
Landa-Becerra, R., Santana-Quintero, L.V., Coello, C.A.: Knowledge incorporation in multi-objective evolutionary algorithms. In: Ghosh, A., Dehuri, S., Ghosh, S. (eds.) Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases. Springer, Berlin (February 2008), ISBN 978-3-540-77466-2
Mackay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)
Medaglia, A.L., Gutiérrez, E.: JGA: An object-oriented framework for rapid development of genetic algorithms. In: Rennard, J.-P. (ed.) Handbook of Research on Nature Inspired Computing for Economics and Management. IDEA Publishing, Hershey (2006)
Medaglia, A.L., Gutiérrez, E., Villegas, J.G.: Solving facility location problems using a tool for rapid development of multi-objective evolutionary algorithms (MOEAs). In: Rennard, J.-P. (ed.) Handbook of Research on Nature Inspired Computing for Economics and Management. IDEA Publishing, Hershey (2006)
Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)
Nain, P., Deb, K.: A computationally effective multi-objective search and optimization technique using coarse-to-fine grain modeling. Technical report, KanGAL, Indian Institute of Technology, Kanpur, India (2002)
Ochoa, G., Harvey, I., Buxton, H.: Error thresholds and their relation to optimal mutation rates. In: Proceedings of the Fifth European Conference on Advances in Artificial Life, pp. 54–63. Springer, London (1999)
Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary multi-objective optimization. In: Parallel Problem Solving from Nature (PPSN VIII), pp. 792–802. Springer, Berlin (2004)
Reddy, J.: Introduction to the Finite Element Method. McGraw–Hill, New York (1993)
Rodríguez, J.E., Medaglia, A.L., Casas, J.P.: Approximation to the optimum design of a motorcycle frame using finite element analysis and evolutionary algorithms. In: Bass, E.J. (ed.) Proceedings of the 2005 IEEE Systems and Information Engineering Design Symposium, pp. 277–285. IEEE Press, Piscataway (2005)
Saitou, K., Izui, K., Nishiwaki, S., Papalambros, P.: A survey of structural optimization in mechanical product development. J. Comput. Inf. Sci. Eng. 5, 214–226 (2005)
Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum Associates, Inc., Mahwah (1985)
Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness inheritance in genetic algorithms. In: SAC’95: Proceedings of the 1995 ACM Symposium on Applied Computing, pp. 345–350. ACM, New York (1995)
Voutchkov, Y., Keane, A.J.: Multiobjective optimization using surrogates. In: I.C. Parmee (ed.) Proceedings of the Seventh International Conference on Adaptive Computing in Design and Manufacture, pp. 167–175. Bristol (2006)
Walker, M., Smith, R.E.: A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis. Compos. Struct. 62(1), 123–128 (2003)
Yoshimura, M., Nishiwaki, S., Izui, K.: A multiple cross-sectional shape optimization method for automotive body frames. J. Mech. Des. 127, 49–57 (2005)
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1999)
Zitzler, E., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evol. Comput. 8(2), 173–195 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rodríguez, J.E., Medaglia, A.L. & Coello Coello, C.A. Design of a motorcycle frame using neuroacceleration strategies in MOEAs. J Heuristics 15, 177–196 (2009). https://doi.org/10.1007/s10732-007-9069-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-007-9069-4