Skip to main content

Hybridized evolutionary local search algorithm for the team orienteering problem with time windows

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

The orienteering problem (OP) consists in finding an elementary path over a subset of vertices. Each vertex is associated with a profit that is collected on the visitor’s first visit. The objective is to maximize the collected profit with respect to a limit on the path’s length. The team orienteering problem (TOP) is an extension of the OP where a fixed number m of paths must be determined. This paper presents an effective hybrid metaheuristic to solve both the OP and the TOP with time windows. The method combines the greedy randomized adaptive search procedure (GRASP) with the evolutionary local search (ELS). ELS generates multiple distinct child solutions using a mutation mechanism. Each child solution is further improved by a local search procedure. GRASP provides multiple starting solutions to the ELS. The method is able to improve several best known results on available benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)

    Article  Google Scholar 

  • Balas, E., Martin, G.: Roll-a-round: Software package for scheduling the rounds of a rolling mill. Copyright Balas and Martin Associates (1985)

  • Belenguer, J.M., Benavent, E., Labadi, N., Prins, C., Reghioui, M.: Split delivery capacitated arc routing problem: lower bound and metaheuristic. Transp. Sci. 44, 206–220 (2010)

    Article  Google Scholar 

  • Blum, A., Chawla, S., Karger, D.R., Lane, T., Meyerson, A., Minkoff, M.: Approximation algorithms for orienteering and discounted-reward tsp. SIAM J. Comput. 37(2), 653–670 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Bouly, H., Dang, D.C., Moukrim, A.: A memetic algorithm for the team orienteering problem. 4OR. Published online (2009)

  • Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR 5(3), 211–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Chao, I.M., Golden, B.L., Wasil, E.A.: A fast and effective heuristic for the orienteering problem. Eur. J. Oper. Res. 88(3), 475–489 (1996a)

    Article  MATH  Google Scholar 

  • Chao, I.M., Golden, B.L., Wasil, E.A.: The team orienteering problem. Eur. J. Oper. Res. 88(3), 464–474 (1996b)

    Article  MATH  Google Scholar 

  • Chekuri, C., Korula, N., Pál, M.: Improved algorithms for orienteering and related problems. In: Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, SODA ’08, Philadelphia, PA, USA, pp. 661–670 (2008)

    Google Scholar 

  • Chen, K., Har-Peled, S.: The orienteering problem in the plane revisited. In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, SCG ’06, pp. 247–254. ACM, New York (2006)

    Chapter  Google Scholar 

  • Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and multi-depot vehicle routing problems. Networks 30(2), 105–119 (1997)

    Article  MATH  Google Scholar 

  • Deitch, R., Ladany, S.P.: The one-period bus touring problem: Solved by an effective heuristic for the orienteering tour problem and improvement algorithm. Eur. J. Oper. Res. 127(1), 69–77 (2000)

    Article  MATH  Google Scholar 

  • Dell’Amico, M., Maffioli, F., Värbrand, P.: On prize-collecting tours and the asymmetric travelling salesman problem. Int. Trans. Oper. Res. 2(3), 297–308 (1995)

    Article  MATH  Google Scholar 

  • Dongarra, J.J.: Performance of various computers using standard linear equations software in a fortran environment. Tech. rep., Electrical Engineering and Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301, http://www.netlib.org/benchmark/performance.ps (2009)

  • Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Transp. Sci. 39(2), 188–205 (2005)

    Article  Google Scholar 

  • Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Glob. Optim. 6, 109–133 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Fink, A., Schneidereit, G., Voß, S.: Solving general ring network design problems by meta-heuristics. In: Laguna, M., Velarde, J.G. (eds.) Computing Tools for Modeling, Optimization and Simulation (Interfaces in Computer Science and Operations Research), pp. 91–113. Kluwer, Boston (2000)

    Chapter  Google Scholar 

  • Fischetti, M., Toth, P.: An additive approach for the optimal solution of the prize-collecting traveling salesman problem. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, pp. 319–343. Elsevier, Amsterdam (1988)

    Google Scholar 

  • Fischetti, M., Gonzalez, J.J.S., Toth, P.: Solving the orienteering problem through branch-and-cut. INFORMS J. Comput. 10(2), 133–148 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. Inf. Process. Lett. 83(2), 57–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

    Article  MATH  Google Scholar 

  • Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Nav. Res. Logist. 34(3), 307–456 (1987)

    Article  MATH  Google Scholar 

  • Golden, B.L., Wang, Q., Liu, L.: A multifaceted heuristic for the orienteering problem. Nav. Res. Logist. 35(3), 359–366 (1988)

    Article  MATH  Google Scholar 

  • Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows. J. Oper. Res. Soc. 43(6), 629–635 (1992)

    MATH  Google Scholar 

  • Kataoka, S., Yamada, T., Morito, S.: Minimum directed 1-subtree relaxation for score orienteering problem. Eur. J. Oper. Res. 104(1), 139–153 (1998)

    Article  MATH  Google Scholar 

  • Ke, L., Archetti, C., Feng, Z.: Ants can solve the team orienteering problem. Comput. Ind. Eng. 54(3), 648–665 (2008)

    Article  Google Scholar 

  • Kindervater, G.A.P., Savelsbergh, M.W.P.: Vehicle routing: handling edge exchanges. In: Aarts, E., Lenstra, J. (eds.) Local Search in Combinatorial Optimization, pp. 311–336. Wiley, New York (1997)

    Google Scholar 

  • Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl. Math. 26(2–3), 193–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Mansini, R., Pelizzari, M., Wolfler-Calvo, R.: The tour orienteering problem with time windows. In: Odysseus 2006—Third International Workshop on Freight Transportation and Logistics. Altea Spain, Universitat de València, May 23–26 (2006)

    Google Scholar 

  • Merz, P., Wolf, S.: Evolutionary local search for the super-peer selection problem and the p-hub median problem. In: Bartz-Beielstein, T., et al. (ed.) Lecture notes in computer science, vol. 4771, pp. 1–15 Springer, Berlin (2007)

    Google Scholar 

  • Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering problem with time windows. Foundations of Computing and Decision Sciences (34) (2009)

  • Prins, C.: A grasp x evolutionary local search hybrid for the vehicle routing problem. In: Pereira, F., Tavares, J. (eds.) Bio-inspired algorithms for the vehicle routing problem, vol. 16, pp. 35–53. Springer, Berlin (2009)

    Chapter  Google Scholar 

  • Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization heuristics for solving the orienteering problem with time windows with dynamic programming. Comput. Oper. Res. 36(4), 1191–1203 (2009)

    Article  MATH  Google Scholar 

  • Schilde, M., Doerner, K.F., Hartl, R.F., Kiechle, G.: Metaheuristics for the bi-objective orienteering problem. Swarm Intell. 3(3), 179–201 (2009)

    Article  Google Scholar 

  • Sevkli, Z., Sevilgen, E.: Computer and information sciences—ISCIS 2006. In: Lecture Notes in Computer Science. Variable neighborhood search for the orienteering problem, vol. 4263, pp. 134–143. Springer, Berlin (2006)

    Google Scholar 

  • Silberholz, J., Golden, B.L.: The effective application of a new approach to the generalized orienteering problem. Journal of Heuristics published online (2009)

  • Solomon, M.: Algorithms for the vehicle routing and scheduling problem with time window constraints. 4OR 35, 254–265 (1987)

    MATH  Google Scholar 

  • Souffriau, W., Vansteenwegen, P., Berghe, G.V., Oudheusden, D.V.: A path relinking approach for the team orienteering problem. Comput. Oper. Res. In Press (2009)

  • Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem. Comput. Oper. Res. 32(6), 1379–1407 (2005)

    Article  Google Scholar 

  • Tasgetiren, M.F.: A genetic algorithm with an adaptive penalty function for the orienteering problem. J. Econ. Soc. Res. 4(2), 1–26 (2001)

    Google Scholar 

  • Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-period orienteering problem with multiple time windows. Comput. Oper. Res. 37(2), 351–367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Tsiligirides, T.: Heuristic methods applied to orienteering. J. Oper. Res. Soc. Am. 35(9), 797–809 (1984)

    Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2009a)

    Article  MATH  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: Iterated local search for the team orienteering problem with time windows. Comput. Oper. Res. 36(12), 3281–3290 (2009b)

    Article  MATH  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Berghe, G.V., Oudheusden, D.V.: Metaheuristics for tourist trip planning. In: Sörensen, K., Sevaux, M., Habenicht, W., Geiger, M.J. (eds.) Metaheuristics in the Service Industry. Lecture Notes in Economics and Mathematical Systems, vol. 624, pp. 15–31. Springer, Berlin (2009c)

    Chapter  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: A survey. Euro. J. Oper. Res. In Press (2010)

  • Wang, X., Golden, B.L., Wasil, E.A.: Using a genetic algorithm to solve the generalized orienteering problem. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, Springer US. Operations Research/Computer Science Interfaces Series, vol. 43, pp. 263–274 (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Melechovský.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labadie, N., Melechovský, J. & Wolfler Calvo, R. Hybridized evolutionary local search algorithm for the team orienteering problem with time windows. J Heuristics 17, 729–753 (2011). https://doi.org/10.1007/s10732-010-9153-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-010-9153-z

Keywords