Abstract
This article investigates the local maxima properties of a box-constrained quadratic optimization formulation of the maximum independent set problem in graphs. Theoretical results characterizing binary local maxima in terms of certain induced subgraphs of the given graph are developed. We also consider relations between continuous local maxima of the quadratic formulation and binary local maxima in the Hamming distance-1 and distance-2 neighborhoods. These results are then used to develop an efficient local search algorithm that provides considerable speed-up over a typical local search algorithm for the binary Hamming distance-2 neighborhood.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abello, J., Butenko, S., Pardalos, P., Resende, M.: Finding independent sets in a graph using continuous multivariable polynomial formulations. J. Glob. Optim. 21, 111–137 (2001)
Alon, N., Spencer, J.H., Erdös, P.: The Probabilistic Method. Wiley, New York (1991)
Balasundaram, B., Butenko, S.: Constructing test functions for global optimization using continuous formulations of graph problems. J. Optim. Methods Softw. 20(4–5), 439–452 (2005)
Balasundaram, B., Butenko, S.: On a polynomial fractional formulation for independence number of a graph. J. Glob. Optim. 35(3), 405–421 (2006)
Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic 0-1 programming. Math. Program. 44(1–3), 127–137 (1989)
Beck, A., Teboulle, M.: Global optimality conditions for quadratic optimization problems with binary constraints. SIAM J. Optim. 11(1), 179–188 (2000)
Bomze, I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10, 143–164 (1997)
Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic, Dordrecht (1999)
Boros, E., Hammer, P.L.: The max-cut problem and quadratic 0–1 optimization; polyhedral aspects, relaxations and bounds. Ann. Oper. Res. 33(3), 151–180 (1991)
Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)
Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for quadratic unconstrained binary optimization. J. Heuristics 13(2), 99–132 (2007)
Chen, W., Zhang, L.: Global optimality conditions for quadratic 0-1 optimization problems. J. Glob. Optim. 46(2), 191–206 (2010)
de Angelis, P.L., Bomze, I.M., Toraldo, G.: Ellipsoidal approach to box-constrained quadratic problems. J. Glob. Optim. 28, 1–15 (2004)
Diestel, R.: Graph Theory. Springer, Berlin (1997)
Dimacs: Cliques, coloring, and satisfiability: Second Dimacs implementation challenge (1995). Online: http://dimacs.rutgers.edu/Challenges/. Accessed March 2007
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W.H. Freeman, New York (1979)
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Dordrecht (1997)
Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR (2010). doi:10.1007/s10288-009-0115-y
Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)
Harant, J.: Some news about the independence number of a graph. Discuss. Math., Graph Theory 20, 71–79 (2000)
Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82(3), 291–315 (1998)
Huang, H.X., Pardalos, P.M., Prokopyev, O.A.: Lower bound improvement and forcing rule for quadratic binary programming. Comput. Optim. Appl. 33(2–3), 187–208 (2006)
Kochenberger, G., Glover, F., Alidaee, B., Rego, C.: An unconstrained quadratic binary programming approach to the vertex coloring problem. Ann. Oper. Res. 139(1), 229–241 (2005)
Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24, 1097–1100 (1997)
Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)
Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Ann. Oper. Res. 131, 259–282 (2004)
Pardalos, P.M., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2), 131–144 (1990)
Pardalos, P.M., Xue, J.: The maximum clique problem. J. Glob. Optim. 4(3), 301–328 (1992)
Pardalos, P.M., Prokopyev, O.A., Shylo, O.V., Shylo, V.P.: Global equilibrium search applied to the unconstrained binary quadratic optimization problem. Optim. Methods Softw. 23(1), 129–140 (2008)
Sloane, N.J.A.: Challenge problems: Independent sets in graphs (2000). Online: http://www.research.att.com/~njas/doc/graphs.html. Accessed July 2003
Sloane, N.J.A.: On single-deletion-correcting codes. In: Arasu, K.T., Seress, A. (eds.) Codes and Designs. Ohio State University Mathematical Research Institute Publications, vol. 10, pp. 273–291. de Gruyter, Berlin (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mahdavi Pajouh, F., Balasundaram, B. & Prokopyev, O.A. On characterization of maximal independent sets via quadratic optimization. J Heuristics 19, 629–644 (2013). https://doi.org/10.1007/s10732-011-9171-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-011-9171-5