Abstract
Integer problems under joint probabilistic constraints with random coefficients in both sides of the constraints are extremely hard from a computational standpoint since two different sources of complexity are merged. The first one is related to the challenging presence of probabilistic constraints which assure the satisfaction of the stochastic constraints with a given probability, whereas the second one is due to the integer nature of the decision variables. In this paper we present a tailored heuristic approach based on alternating phases of exploration and feasibility repairing which we call Express (Explore and Repair Stochastic Solution) heuristic. The exploration is carried out by the iterative solution of simplified reduced integer problems in which probabilistic constraints are discarded and deterministic additional constraints are adjoined. Feasibility is restored through a penalty approach. Computational results, collected on a probabilistically constrained version of the classical 0–1 multiknapsack problem, show that the proposed heuristic is able to determine good quality solutions in a limited amount of time.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahuja, R.K., Cunha, C.B.: Very large-scale neighborhood search for the K-constraint multiple knapsack. J. Heuristics 11, 465–481 (2005)
Alastair, A., Levine, J., Long, D.: Constraint directed variable neighbourhood search In: Proceedings of the 4th International Workshop on Local Search Techniques in Constraint Satisfaction, pp. 348–371 (2007)
Balas, E., Jeroslow, R.: Canonical cuts on the unit hypercube. SIAM J. Appl. Math. 23(1), 61–69 (1972)
Beraldi, P., Bruni, M.E.: A probabilistic model applied to emergency service vehicle location. Eur. J. Oper. Res. 196, 323–331 (2009)
Beraldi, P., Bruni, M.E.: An exact approach for solving integer problems under probabilistic constraints with random technology matrix. Ann. Oper. Res. 177(1), 127–137 (2010)
Beraldi, P., Ruszczyński, A.: A branch and bound method for stochastic integer problems under probabilistic constraints. Optim. Methods Soft. 17, 359–382 (2002)
Beraldi, P., Ruszczyński, A.: The probabilistic set covering problem. Oper. Res. 50, 956–967 (2002)
Beraldi, P., Ruszczyński, A.: Beam search heuristic to solve stochastic integer problems under probabilistic constraints. Eur. J. Oper. Res. 167(1), 35–47 (2005)
Beraldi, P., Bruni, M.E., Conforti, D.: Designing robust medical service via stochastic programming. Eur. J Oper. Res. 158(1), 183–193 (2004)
Beraldi, P., Bruni, M.E., Guerriero, F.: Network reliability design via joint probabilistic constraints. IMA J. Manag. Math. 21(2), 213–226 (2010)
Beraldi, P., Bruni, M.E., Violi, A.: Capital rationing problems under uncertainty and risk. Comput. Optim. Appl. 51(3), 1375–1396 (2012)
Branda, M.: On relations between chance constrained and penalty function problems under discrete distributions. Math. Methods Oper. Res. doi:10.1007/s00186-013-0428-7 (2012)
Bruni, M.E., Conforti, P., Beraldi, P., Tundis, E.: Probabilistically constrained models for efficiency and dominance in DEA. Int. J. Prod. Econ. 117(1), 219–228 (2009a)
Bruni, M.E., Guerriero, F., Pinto, E.: Evaluating project completion time in project networks with discrete random activity durations. Comput. Oper. Res. 36, 2716–2722 (2009b)
Bruni, M.E., Beraldi, P., Guerriero, F., Pinto, E.: A Heuristic approach for resource constrained projects with uncertain activity durations. Comput. Oper. Res. 38(9), 1305–1318 (2011)
Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11(1), 18–39 (1963)
Cheon, M.S., Ahmed, S., Al-Khayyal, F.: A branch-reduce-cut algorithm for the global optimization of probabilistically constrained linear programs. Math. Program. B 108(2–3), 617–634 (2006)
Freville, A., Plateau, G.: An efficient preprocessing procedure for the multidimensional 0–1 knapsack problem. Discr. Appl. Math. 49(1–3), 189–212 (1994)
Gilmore, P.C., Gomory, R.E.: The theory and computation of knapsack functions. Oper. Res. 14, 1045–1075 (1966)
Henrion, R., Möller, A.: Optimization of a continuous distillation process under random inflow rate. Comput. Math. Appl. 45(1–3), 247–262 (2003)
Herault, L., Privault, C.: Solving a real world assignment problem with a metaheuristic. J. Heuristics 4(4), 383–398 (1998)
Jagannathan, R., Rao, M.R.: A class of nonlinear chance-constrained programming models with joint constraints. Oper. Res. 21(1), 360–364 (1973)
Kaparis, K., Letchford, A.N.: Local and global lifted cover inequalities for the 0–1 multidimensional knapsack problem. Eur. J. Oper. Res. 186(1), 91–103 (2008)
Klopfenstein, O., Nace, D.: Robust approach to the chance-constrained knapsack problem. Oper. Res. Lett. 36(5), 628–632 (2008)
Klopfenstein, O.: Tractable algorithms for chance-constrained combinatorial problems. RAIRO Oper. Res. 43(2), 157–187 (2009)
Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1–2), 31–56 (2012)
Lejeune, M.A., Ruszczyński, A.: An efficient trajectory method for probabilistic inventory production distribution problems. Oper. Res. 55(2), 378–394 (2007)
Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming: A computational approach. In Abraham, A., Hassanien, A.-E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence: Vol. 3(203) of Studies in Computational Intelligence, pp. 153–234. Springer, Berlin (2009)
Lorie, J., Savage, L.: Three problems in capital rationing. J. Bus. 28(4), 229–239 (1995)
Luedtke, J.: An integer programming and decomposition approach to general chance-constrained mathematical programs. Lecture Notes in Computer Science, vol. 6080, pp. 271–284 (2010)
Luedtke, J., Ahmed, S.: A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim. 19(2), 674–699 (2008)
Luedtke, J., Ahmed, S., Nemhauser, G.L.: An integer programming approach for linear programs with probabilistic constraints. Mathe. Program. A 122(2), 247–272 (2010)
Miller, B.L., Wagner, H.M.: Chance constrained programming with joint constraints. Oper. Res. 13(6), 930–945 (1965)
Murr, M.R., Prékopa, A.: Solution of a product substitution problem using stochastic programming. In: Uryasev, S. P. (eds.) Probabilistic Constrained Optimization: Methodology and Applications, pp. 252–271. Kluwer, Dordrecht (2000)
Nannicini, G., Belotti, P.: Rounding-based heuristics for nonconvex MINLPs. Math. Program. Comput. 4(1), 1–31 (2012)
Patel, J., Chinneck, J.W.: Active-constraint variable ordering for faster feasibility of mixed integer linear programs. Math. Programm. A 110(3), 445–474 (2007)
Prékopa, A.: Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. 32, 301–315 (1971)
Prékopa, A.: Programming under probabilistic constraints with a random technology matrix. Mathematische Operationsforschung und Statistik, Series Optimization 5, 109–116 (1974)
Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)
Prékopa, A., Yoda, K., Subasi, M.M.: Uniform quasi-concavity in probabilistic constrained stochastic programming. Oper. Res. Lett. 39, 188–192 (2011)
Puchinger, J., Raidl, G.R., Pferschy, U.: The multidimensional knapsack problem: structure and algorithms. INFORMS J. Comput. 22(2), 250–265 (2010)
Quadri, D., Soutif, E., Tolla, P.: Exact solution method to solve large scale integer quadratic multidimensional knapsack problems. J. Combin. Optimiz. 17(2), 157–167 (2009)
Rossi, F., Van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)
Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Math. Program. A 93(2), 195–215 (2002)
Saxena, A., Goyal, V., Lejeune, M.A.: MIP reformulations of the probabilistic set covering problem. Math. Program. A 121(1), 1–31 (2009)
Sen, S.: Relaxations for probabilistically constrained programs with discrete random variables. Oper. Res. Lett. 11(2), 81–86 (1992)
Tanner, M., Beier, E.: A general heuristic method for joint chance-constrained stochastic programs with discretely distributed parameters. Optimization, online (2010)
Tanner, M.W., Ntaimo, L.: IIS Branch-and-cut for joint chance-constrained programs with random technology matrices. Eur. J. Oper. Res. 207(1), 290–296 (2010)
Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London (1993)
Walser, J.P.: Integer Optimization by Local Search: A Domain-Independent Approach. Springer, Berlin (1999)
Watson, J.P., Wets, R.J.-B., Woodruff, D.L.: Scalable heuristics for a class of chance-constrained stochastic programs. INFORMS J. Comput. 22(4), 543–554 (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bruni, M.E., Beraldi, P. & Laganà, D. The Express heuristic for probabilistically constrained integer problems. J Heuristics 19, 423–441 (2013). https://doi.org/10.1007/s10732-013-9218-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-013-9218-x