Abstract
In this paper, we study the multiobjective version of the set covering problem. To our knowledge, this problem has only been addressed in two papers before, and with two objectives and heuristic methods. We propose a new heuristic, based on the two-phase Pareto local search, with the aim of generating a good approximation of the Pareto efficient solutions. In the first phase of this method, the supported efficient solutions or a good approximation of these solutions is generated. Then, a neighborhood embedded in the Pareto local search is applied to generate non-supported efficient solutions. In order to get high quality results, two elaborate local search techniques are considered: a large neighborhood search and a variable neighborhood search. We intensively study the parameters of these two techniques. We compare our results with state-of-the-art results and we show that with our method, better results are obtained for different indicators.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
A MOCO problem is intractable if the number of non-dominated points is exponential in the size of the instance.
However, the authors claim that they generate all the supported efficient solutions, even if they use a heuristic to solve the linear weighted sum problems.
References
Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale neighborhood search techniques. Discrete Appl. Math. 123(1–3), 75–102 (2002)
Aneja, Y.P., Nair, K.P.K.: Bicriteria transportation problem. Manag. Sci. 25, 73–78 (1979)
Angel, E., Bampis, E., Gourvès, L.: A dynasearch neighborhood for the bicriteria traveling salesman problem. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, pp. 153–176. Springer, Berlin (2004)
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002)
Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing–a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7, 34–47 (1998)
Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New-York (2001)
Drugan, M.M., Thierens, D.: Stochastic pareto local search: Pareto neighbourhood exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)
Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Pareto local search algorithms for anytime bi-objective optimization. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP of Lecture Notes in Computer Science, vol. 7245, pp. 206–217. Springer, Berlin (2012)
Ehrgott, M., Gandibleux, X.: Multiobjective combinatorial optimization. In: Ehrgott, M., Gandibleux, X. (eds.) Multiple Criteria Optimization–State of the Art Annotated Bibliographic Surveys, vol. 52, pp. 369–444. Kluwer Academic Publishers, Boston (2002)
Gandibleux, X., Vancoppenolle, D., Tuyttens, D.: A first making use of GRASP for solving MOCO problems. In 14th International Conference in Multiple Criteria Decision-Making, Charlottesville (1998)
Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Kluwer, Boston (2003)
Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Lecture Notes in Economics and Mathematical Systems, vol. 177, pp. 109–127. Springer, Berlin (1979)
Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the nondominated set. Technical Report, Technical University of Denmark, Lingby, Denmark (1998)
Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)
Hertz, A., Jaumard, B., Ribeiro, C.: A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives. RAIRO 28(3), 303–328 (1994)
Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on the 0/1 knapsack problem–a comparative experiment. IEEE Trans. Evol. Comput. 6(4), 402–412 (2002)
Jaszkiewicz, A.: Do multiple-objective metaheuristics deliver on their promises? A computational experiment on the set-covering problem. IEEE Trans. Evol. Comput. 7(2), 133–143 (2003)
Lan, G., DePuy, G.W., Whitehouse, G.E.: An effective and simple heuristic for the set covering problem. Eur. J. Oper. Res. 176(3), 1387–1403 (2007)
Laumanns, M., Thiele, L., Zitzler, E.: An adaptative scheme to generate the Pareto front based on the epsilon-constraint method. Technical Report 199, Technischer Bericht, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) (2004)
Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)
Lourenço, H.R., Paixão, J.P., Portugal, R.: The crew-scheduling module in the gist system. Economics Working Papers 547, Department of Economics and Business, Universitat Pompeu Fabra (2001)
Lust, T., Teghem, J.: The multiobjective traveling salesman problem a survey and a new approach. In: Coello Coello, C., Dhaenens, C., Jourdan, L. (eds.) Advances in Multi-Objective Nature Inspired Computing of Studies in Computational Intelligence, vol. 272, pp. 119–141. Springer, Berlin (2010)
Lust, T., Teghem, J.: The multiobjective multidimensional knapsack problem: a survey and a new approach. Int. Trans. Oper. Res. 19(4), 495–520 (2012)
Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling salesman problem. J. Heuristics 16(3), 475–510 (2010)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
Moraga, R.: Meta-RaPS: an effective solution approach for combinatorial problems. PhD thesis, University of Central Florida, Orlando (FL), US (2002)
Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Gandibleux, X., Sevaux, M., Sörensen, K., T’kindt, V. (eds.) Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, vol. 535, pp. 177–199. Springer, Berlin (2004)
Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics of International Series in Operations Research & Management Science, vol. 146, pp. 399–419. Springer, USA (2010)
Prins, C., Prodhon, C.: Two-phase method and lagrangian relaxation to solve the bi-objective set covering problem. Ann. Oper. Res. 147(1), 23–41 (2006)
Przybylski, A., Gandibleux, X., Ehrgott, M.: Two-phase algorithms for the biobjective assignement problem. Eur. J. Oper. Res. 185(2), 509–533 (2008)
Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In CP ’98: Proceedings of the 4th International Conference on Principles and Practice of Constraint Programming, pp. 417–431, London, UK (1998)
Steuer, R.: Multiple Criteria Optimization: Theory, Computation and Applications. Wiley, New York (1986)
Teghem, J.: Multiple objective linear programming. In: Bouyssou, D., Dubois, D., Prade, H., Pirlot, M. (eds.) Decision-Making Process (Concepts and Methods), pp. 199–264. Wiley, Hoboken (2009)
Thiele, L., Miettinen, K., Korhonen, P.J., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009)
Ulungu, E.L., Teghem, J.: Multiobjective combinatorial optimization problems: a survey. J. Multi-Criteria Decis. Anal. 3, 83–104 (1994)
Ulungu, E.L., Teghem, J., Fortemps, Ph, Tuyttens, D.: MOSA method: a tool for solving multiobjective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 8(4), 221–236 (1999)
Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1999)
Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Grunert da Fonseca, V.: Why quality assessment of multiobjective optimizers is difficult. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002), pp. 666–673. Morgan Kaufmann Publishers, San Francisco (2002)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lust, T., Tuyttens, D. Variable and large neighborhood search to solve the multiobjective set covering problem. J Heuristics 20, 165–188 (2014). https://doi.org/10.1007/s10732-013-9236-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10732-013-9236-8