Skip to main content
Log in

Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

MOEA/D is one of the promising evolutionary approaches for solving multi and many-objective optimization problems. MOEA/D decomposes a multi-objective optimization problem into a number of single objective optimization problems. Each single objective optimization problem is defined by a scalarizing function using a weight vector. In MOEA/D, there are several scalarizing approaches such as weighted Tchebycheff, reciprocal weighted Tchebycheff, weighted sum (WS) and penalty-based boundary intersection (PBI). Each scalarizing function has a characteristic effect on the search performance of MOEA/D and provides a scenario of multi-objective solution search. To improve the availability of MOEA/D framework for solving various kinds of problems, it is important to provide a new scalarizing function which has different characteristics from the conventional scalarizing functions. In particular, the conventional scalarizing approaches face a difficulty to approximate a widely spread Pareto front in some problems. To approximate the entire Pareto front by improving the spread of solutions in the objective space and enhance the search performance of MOEA/D in multi and many-objective optimization problems, in this work we propose the inverted PBI scalarizing approach which is an extension of the conventional PBI and WS. In this work, we analyze differences between inverted PBI and other scalarizing functions, and compare the search performances of NSGA-III and five MOEA/Ds using weighted Tchebycheff, reciprocal weighted Tchebycheff, WS, PBI and inverted PBI in many-objective knapsack problems and WFG4 problems with 2–8 objectives. As results, we show that the inverted PBI based MOEA/D achieves higher search performance than other algorithms in problems with many-objectives and the difficulty to approximate a widely spread Pareto front in the objective space. Also, we show the robustness of the inverted PBI on Pareto front geometry by using problems with four representative concave, linear, convex and discontinuous Pareto fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. In this experiment, we use \(\theta =\{0,0.1,0.2,0.3,0.4,0.6,0.8,1,1.5,2,3,4,5,6,8,10,50,100,150,200,500,1000\}\) for both PBI and IPBI.

  2. In this experiment, we use \(\theta =\{\)0, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, 50, 100, 150, 200, 500, 1000\(\}\) for both PBI and IPBI.

References

  • Aguirre, H., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

    Article  MATH  Google Scholar 

  • Aguirre, H., Oyama, A., Tanaka, K.: Adaptive \(\varepsilon \)-hood for evolutionary many-objective optimization. In: Proceedings of 7th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2013). Lecture Notes in Computer Science, vol. 7811, pp. 322–336. Springer, New York (2013)

  • Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Articulating user preferences in many-objective problems by sampling the weighted hypervolume. In: Proceedings of 2009 Genetic and Evolutionary Computation Conference (GECCO 2009), pp. 555–562. ACM Press (2009)

  • Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  • Bowman Jr, V.J.: On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. Lect. Notes Econ. Math. Syst. 130, 76–86 (1976)

    Article  Google Scholar 

  • Brockhoff, D., Zitzler, E.: Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: Proceedings of the 9th Parallel Problem Solving from Nature (PPSN IX). Lecture Notes in Computer Science, vol. 4193, pp.533–542. Springer, (2006)

  • Chiang, T.C., Lai, Y.P.: MOEA/D-AMS: improving MOEA/D by an adaptive mating selection mechanism. In: Proceedings of 2011 IEEE Congress on Evolutionary Computation (CEC 2011), pp. 1473–1480 (2011)

  • Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  • Deb, K., Saxena, K.: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of 2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp. 3353–3360 (2006a)

  • Deb, K., Sundar, J.: Preference point based multi-objective optimization using evolutionary algorithms. In: Proceedings of 2006 Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 635–642. ACM Press (2006b)

  • Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, Part I: Solving problems with box constraints. IEEE Trans. Evolut. Comput. PP(99), 1–23 (2013)

    Google Scholar 

  • Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  • Fabre, M., Pulido, G., Coello, C.A.C.: Alternative fitness assignment methods for many-objective optimization problems. In: Proceedings of the 9th International Conference Evolution Artificielle (EA 2009). Lecture Notes in Computer Science, vol. 5975, pp. 146–157. Springer, (2010)

  • Gass, S., Saaty, T.: The computational algorithm for the parametric objective function. Naval Res. Logist. 2(1–2), 39–45 (1955). doi:10.1002/nav.3800020106

    Article  MathSciNet  Google Scholar 

  • Huband, S., Hingston, P., Barone, L., While, L.: A review of multi-objective test problems and a scalable test problem toolkit. IEEE Trans. Evolut. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  • Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many? In: Proceedings of 2005 IEEE Congress on Evolutionary Computation (CEC 2005), pp. 222-227 (2005)

  • Ishibuchi, H., Nojima, Y.: Optimization of scalarizing functions through evolutionary multiobjective optimization. In: Proceedings of the 4th Intl. Conf. on Evolutionary Multi-Criterion Optimization (EMO 2007). Lecture Notes in Computer Science, vol. 4403, pp.51–65. Springer, (2007a)

  • Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Iterative approach to indicator-based multiobjective optimization. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3697–3704 (2007b)

  • Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: a short review. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation (CEC 2008), pp. 2424-2431 (2008)

  • Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Adaptation of scalarizing functions in MOEA/D: an adaptive scalarizing function-based multiobjective evolutionary algorithm. In: Proceedings of 2009 Evolutionary Multi-Criterion Optimization (EMO 2009). Lecture Notes in Computer Science, vol. 5467, pp. 438–452. Springer, (2009)

  • Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous use of different scalarizing functions in MOEA/D. In: Proceedings of 2010 Genetic and Evolutionary Computation Conference (GECCO 2010), pp. 519–526 (2010)

  • Ishibuchi, H., Akedo, N., Nojima, Y.: A study on the specification of a scalarizing function in MOEA/D for many-objective knapsack problems. In: Proceedings of Learning and Intelligent Optimization 7 (LION 7). Lecture Notes in Computer Science, vol. 7997, pp. 231–246. Springer, (2013)

  • Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evolut. Comput. 19(2), 264–283 (2015)

    Article  Google Scholar 

  • Jaimes, A.L., Coello, C.A.C., Chakraborty, D.: Objective reduction using a feature selection technique. In: Proceedings of 2008 Genetic and Evolutionary Computation Conference (GECCO 2008), pp. 674–680. ACM Press, (2008)

  • Jiang, S., Cai, Z., Zhang, J., Ong, Y.S.: Multiobjective optimization by decomposition with Pareto-adaptive weight vectors. In: Proceedings of 2011 Seventh International Conference on Natural Computation (ICNC), pp. 1260–1264 (2011)

  • Ke, L., Zhang, Q., Battiti, R.: MOEA/D-ACO: a multiobjective evolutionary algorithm using decomposition and antcolony. IEEE Trans. Cybern. 43(6), 1845–1859 (2013)

    Article  Google Scholar 

  • Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evolut. Comput. 13(2), 284–302 (2009)

    Article  Google Scholar 

  • Li, H., Landa-Silva, D.: An adaptive evolutionary multi-objective approach based on simulated annealing. Evolut. Comput. 19(4), 561–595 (2011)

    Article  Google Scholar 

  • Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching based selection in evolutionary multiobjective optimization. IEEE Trans. Evolut. Comput. PP(99), 1–15 (2013)

    Google Scholar 

  • Liu, B., Fernández, F.V., Zhang, Q., Pak, M., Sipahi, S., Gielen, G.: An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing. In: Proceedings of 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 960–966 (2010)

  • Liu, H.-L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evolut. Comput. 18(3), 450–455 (2014)

    Article  Google Scholar 

  • Martinez, S.Z., Coello, C.A.C.: A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of 2011 Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 69–76 (2011)

  • Miettinen, K.: Nonlinear multiobjective optimization. Kluwer, Norwell, MA (1999)

    MATH  Google Scholar 

  • Mohammadi, A., Omidvar, M.N., Xiaodong, L., Deb, K.: Integrating user preferences and decomposition methods for many-objective optimization. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation (CEC 2014), pp. 421–428 (2014)

  • Moubayed, N.A.L., Petrovski, A., McCall, J.: A novel smart multi-objective particle swarm optimisation using decomposition. In: Proceedings of the 11th Parallel Problem Solving from Nature (PPSN XI). Lecture Notes in Computer Science, pp. 1–10. Springer, (2010)

  • Sato, M., Aguirre, H., Tanaka, K.: Effects of \(\delta \)-similar elimination and controlled elitism in the NSGA-II multiobjective evolutionary algorithm. In: Proceedings of 2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp. 1164–1171 (2006)

  • Sato, H., Aguirre, H., Tanaka, K.: Self-controlling dominance area of solutions in evolutionary many-objective optimization. In: Proceedings of the 8th International Conference on Simulated Evolution and Learning (SEAL 2010). Lecture Notes in Computer Science, vol. 6457, pp. 455–465. Springer, (2010)

  • Scheffé, H.: Experiments with mixtures. J. R. Stat. Soc. Ser. B 20(2), 344–360 (1958)

    MATH  Google Scholar 

  • Tan, Y.-Y., Jiao, Y.-C., Li, H., Wang, X.-K.: MOEA/D + uniform design: a new version of MOEA/D for optimization problems with many objectives. Comput. Oper. Res. 40(6), 1648–1660 (2013)

    Article  MathSciNet  Google Scholar 

  • Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  • Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of 2009 IEEE Congress on Evolutionary Computation (CEC 2009), pp. 203–208 (2009)

  • Zhang, Q., Li, H, Maringer, D., Tsang, E.: MOEA/D with NBI-style Tchebycheff approach for portfolio management. In: Proceedings of 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8 (2010b)

  • Zhao, S.Z., Suganthan, P.N., Zhang, Q.: Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans. Evolut. Comput. 16(3), 442–446 (2012)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–271 (1999a)

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M.: Test problems and test data for multiobjective optimizers page. http://www.tik.ee.ethz.ch/sop/download/supplementary/testProblemSuite/ (1999b)

  • Zitzler, E., Kunzili, S.: Indicator-based selection in multiobjective search. In: Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII). Lecture Notes in Computer Science, vol. 3242, pp. 832–842. Springer, (2004)

  • Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 26730129.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Sato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, H. Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs. J Heuristics 21, 819–849 (2015). https://doi.org/10.1007/s10732-015-9301-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-015-9301-6

Keywords

Navigation