Skip to main content
Log in

Iterated local search with Trellis-neighborhood for the partial Latin square extension problem

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

A partial Latin square (PLS) is a partial assignment of n symbols to an \(n\times n\) grid such that, in each row and in each column, each symbol appears at most once. The PLS extension problem is an NP-hard problem that asks for a largest extension of a given PLS. We consider the local search such that the neighborhood is defined by (pq)-swap , i.e., the operation of dropping exactly p symbols and then assigning symbols to at most q empty cells. As a fundamental result, we provide an efficient \((p,\infty )\)-neighborhood search algorithm that finds an improved solution or concludes that no such solution exists for \(p\in \{1,2,3\}\). The running time of the algorithm is \(O(n^{p+1})\). We then propose a novel swap operation, Trellis-swap, which is a generalization of (pq)-swap with \(p\le 2\). The proposed Trellis-neighborhood search algorithm runs in \(O(n^{3.5})\) time. The iterated local search (ILS) algorithm with Trellis-neighborhood is more likely to deliver a high-quality solution than not only ILSs with \((p,\infty )\)-neighborhood but also state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alidaee, B., Kochenberger, G., Wang, H.: Simple and fast surrogate constraint heuristics for the maximum independent set problem. J. Heuristics 14, 571–585 (2008)

    Article  MATH  Google Scholar 

  • Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum independent set problem. J. Heuristics 18, 525–547 (2012). The preliminary version appeared in Proceedings of the 7th WEA (LNCS vol. 5038), pp. 220–234 (2008)

  • Ansótegui, C., Val, A., Dotú, I., Fernández, C., Manyà, F.: Modeling choices in quasigroup completion: SAT vs. CSP. In: Proceedings of the National Conference on Artificial Intelligence, pp. 137–142 (2004)

  • Appa, G., Magos, D., Mourtos, I.: Searching for mutually orthogonal latin squares via integer and constraint programming. Eur. J. Oper. Res. 173(2), 519–530 (2006a)

    Article  MathSciNet  MATH  Google Scholar 

  • Appa, G., Magos, D., Mourtos, I.: A new class of facets for the latin square polytope. Discret. Appl. Math. 154(6), 900–911 (2006b)

    Article  MathSciNet  MATH  Google Scholar 

  • Barry, R.A., Humblet, P.A.: Latin routers, design and implementation. IEEE/OSA J. Lightwave Technol. 11(5), 891–899 (1993)

    Article  Google Scholar 

  • Barták, R.: On generators of random quasigroup problems. Proc. CSCLP 2005, 164–178 (2006)

    MATH  Google Scholar 

  • Colbourn, C.J.: The complexity of completing partial latin squares. Discret. Appl. Math. 8, 25–30 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  • Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn. Chapman & Hall/CRC, Boca Raton (2006)

    Book  MATH  Google Scholar 

  • Crawford, B., Aranda, M., Castro, C., Monfroy, E.: Using constraint programming to solve sudoku puzzles. In: Proceedings of the ICCIT ’08, vol. 2, pp. 926–931 (2008)

  • Crawford, B., Castro, C., Monfroy, E.: Solving sudoku with constraint programming. In: Cutting-Edge Research Topics on Multiple Criteria Decision Making. Communications in Computer and Information Science, vol. 35, pp. 345–348 (2009)

  • Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: Proceedings of the FOCS 2013, pp. 509–518 (2013)

  • Eén, N., Sörensson, N.: The MiniSat Page (ver. 2.2.0). http://minisat.se/Main.html, (2010). Accessed 10 July 2015

  • Fürer, M., Yu, H.: Approximating the \(k\)-set packing problem by local improvements. In Proceedings of the ISCO 2014. LNCS, vol. 8596, pp. 408–420 (2014)

  • Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Company, New York (1979)

    MATH  Google Scholar 

  • Gomes, C., Sellmann, M., van Es, C., van Es, H.: The challenge of generating spatially balanced scientific experiment designs. In: Proceedings of the CPAIOR 2004. LNCS, vol. 3011, pp. 387–394 (2004a)

  • Gomes, C.P., Selman, B.: Problem structure in the presence of perturbations. In: Proceedings of the AAAI-97, pp. 221–227 (1997)

  • Gomes, C.P., Shmoys, D.B.: Completing quasigroups or latin squares: a structured graph coloring problem. In: Proceedings of the Computational Symposium on Graph Coloring and Generalizations (2002)

  • Gomes, C.P., Regis, R.G., Shmoys, D.B.: An improved approximation algorithm for the partial Latin square extension problem. Oper. Res. Lett. 32(5), 479–484 (2004b)

    Article  MathSciNet  MATH  Google Scholar 

  • Hajirasouliha, I., Jowhari, H., Kumar, R., Sundaram. R.: On completing latin squares. In: Proceedings of the STACS 2007. LNCS, vol. 4393, pp. 524–535 (2007)

  • Haraguchi, K.: An efficient local search for the constrained symmetric Latin square construction problem. In Preparation

  • Haraguchi, K.: A constructive algorithm for partial latin square extension problem that solves hardest instances effectively. In: Recent Advances in Computational Optimization—Results of the Workshop on Computational Optimization WCO 2013 at FedCSIS 2013, pp. 67–84 (2013)

  • Haraguchi, K.: An efficient local search for partial latin square extension problem. In: Proceedings of the CPAIOR 2015. LNCS, vol. 9075, pp. 182–198 (2015)

  • Haraguchi, K., Ono, H.: Approximability of latin square completion-type puzzles. In: Proceedings of the FUN 2014. LNCS, vol. 8496, pp. 218–229 (2014)

  • Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every \(t\) of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discret. Math. 2(1), 68–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Ignatiev, A., Morgado, A., Marques-Silva, J.: On reducing maximum independent set to minimum satisfiability. In: Proceedings of the SAT 2014. LNCS, vol. 8561, pp. 103–120 (2014)

  • Itoyanagi, J., Hashimoto, H., Yagiura, M.: A local search algorithm with large neighborhoods for the maximum weighted independent set problem. In: Proceedings of the MIC 2011, pp. 191–200, 2011. The full paper is written in Japanese as a master thesis of the 1st author in Graduate School of Information Science, Nagoya University (2011)

  • Kumar, R., Russel, A., Sundaram, R.: Approximating latin square extensions. Algorithmica 24(2), 128–138 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Lambert, T., Monfroy, E., Saubion, F.: A generic framework for local search: Application to the sudoku problem. In: Proceedings of the ICCS 2006. LNCS, vol. 3991, pp. 641–648 (2006)

  • Le Bras, R., Perrault, A., Gomes, C.P.: Polynomial time construction for spatially balanced latin squares. Technical report, Computing and Information Science Technical Reports, Cornell University (2012). http://hdl.handle.net/1813/28697

  • Lewis, R.: Metaheuristics can solve sudoku puzzles. J. Heuristics 13(4), 387–401 (2007)

    Article  Google Scholar 

  • Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. J. Artif. Intell. Res. 30, 321–359 (2007)

    MathSciNet  MATH  Google Scholar 

  • Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Optimizing with minimum satisfiability. Artif. Intell. 190, 32–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, F., Zhang, J.: Finding orthogonal latin squares using finite model searching tools. Sci. China Inf. Sci. 56(3), 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  • Rasmussen, R.V., Trick, M.A.: Round robin scheduling: a survey. Eur. J. Oper. Res. 188(3), 617–636 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenhouse, J., Taalman, L.: Taking Sudoku Seriously. Oxford University Press, New York (2012)

    MATH  Google Scholar 

  • Simonis, H.: Sudoku as a constraint problem. http://4c.ucc.ie/~hsimonis/sudoku.pdf (2005). Accessed 10 July 2015

  • Smith, C., Gomes, C., Fernandez, C.: Streamlining local search for spatially balanced latin squares. In: Proceedings of the IJCAI’05, pp. 1539–1541 (2005)

  • Soto, R., Crawford, B., Galleguillos, C., Monfroy, E., Paredes, F.: A hybrid AC3-tabu search algorithm for solving sudoku puzzles. Expert Syst. Appl. 40(15), 5817–5821 (2013)

    Article  Google Scholar 

  • Tamura, N.: Sugar: a SAT-based Constraint Solver (ver. 2.2.1). http://bach.istc.kobe-u.ac.jp/sugar/ (2014). Accessed 10 July 2015

  • Vieira Jr., H., Sanchez, S., Kienitz, K.H., Belderrain, M.C.N.: Generating and improving orthogonal designs by using mixed integer programming. Eur. J. Oper. Res. 215(3), 629–638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge very careful and detailed comments given by anonymous reviewers. This work is partially supported by JSPS KAKENHI Grant Number 25870661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Haraguchi.

Additional information

The preliminary version of this paper appears in the proceedings of CPAIOR 2015 (Haraguchi 2015).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haraguchi, K. Iterated local search with Trellis-neighborhood for the partial Latin square extension problem. J Heuristics 22, 727–757 (2016). https://doi.org/10.1007/s10732-016-9317-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-016-9317-6

Keywords

Navigation