Skip to main content
Log in

Dynamic region visit routing problem for vehicles with minimum turning radius

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

In this paper we address the problem of planning optimized routes among dynamically selected target regions for vehicles with a turning radius motion constraint, hereinafter called dynamic Dubins traveling salesman problem with neighborhoods (DDTSPN). Initially, we present a heuristic to solve a simpler version of this problem, called off-line step, where only previously given targets are concerned. We further extend this approach for the more complex case of dynamic scenarios, called on-line step, addressing the inclusion of new targets during the execution of the initial route, whilst minimizing the impact on the total traveled distance. Formal analyzes of our techniques are provided, presenting upper bounds for the total length of the final tour. Results with statistical investigation over a large number of trials in a simulated environment are also provided. Finally, to demonstrate the applicability of our technique in solving the DDTSPN at real-world scenarios, we also report on results of an experiment performed with a real car-like robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. For these classes of vehicles, the Dubins model is an approximation due to discontinuities of the angular velocity’s first derivative, but it is generally acceptable.

  2. This is not a restriction of the method, just a convenience to keep reasoning, implementation, and results visualization simple. The methodology proposed in this paper covers continuous, convex regions in general.

  3. Cases where nodes die or disappear were omitted, but the methodology is trivially extensible to deal with the decreasing of \(N\). This was intentionally left out, especially to avoid cluttered definitions.

  4. Available at http://www.tsp.gatech.edu/concorde/index.html.

  5. A video of the execution is available at https://youtu.be/aIUZN1vmesU.

  6. A method is called zealous if the vehicle cannot wait, or should remain in constant motion if there are still unserved demands in the environment (Ausiello et al. 2008) (a scenario closer to the problem addressed here).

  7. A video of the execution is available at https://youtu.be/YUrxqUg7euw.

References

  • Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ (2007)

    MATH  Google Scholar 

  • Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 55, 197–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Ausiello, G., Feuerstein, E., Leonardi, S., Stougie, L., Talamo, M.: Algorithms for the on-line travelling salesman. Algorithmica 29, 560–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Ausiello, G., Bonifaci, V., Laura, L.: The on-line asymmetric traveling salesman problem. J. Discret Algorithms 6(2mo), 290–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bertsimas, D.J., van Ryzin, G.: A stochastic and dynamic vehicle routing problem in the Euclidean plane. Oper. Res. 39(4), 601–615 (1991)

    Article  MATH  Google Scholar 

  • Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.: Dynamic vehicle routing for robotic systems. Proc. IEEE 99(9), 1482–1504 (2011)

    Article  Google Scholar 

  • Christofides, N.: Technical note-bounds for the travelling-salesman problem. Oper. Res. 20(5), 1044–1056 (1972)

    Article  MATH  Google Scholar 

  • Comarela, G., Gonçalves, K., Pappa, G.L., Almeida, J., Almeida, V.: Robot routing in sparse wireless sensor networks with continuous ant colony optimization. In: 13th Annual Conference on Companion on Genetic and Evolutionary Computation (GECCO), pp. 599–606. ACM, New York, NY (2011)

  • Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  • Fraichard, T., Scheuer, A.: From reeds and Shepp’s to continuous-curvature paths. IEEE Trans. Rob. 20(6), 1025–1035 (2004)

    Article  Google Scholar 

  • Isaacs, J.T., Klein, D.J., Hespanha, J.P.: Algorithms for the traveling salesman problem with neighborhoods involving a Dubins’ vehicle. In: IEEE American Control Conference. pp. 1704–1709 (2011)

  • Jaillet, P., Wagner, M.R.: Online routing problems: value of advanced information as improved competitive ratios. Transp. Sci. 40(2), 200–210 (2006)

    Article  Google Scholar 

  • Jaillet, P., Wagner, M.R.: Online vehicle routing problems: a survey. In: Golden, B., Raghavan, S., Wasil, E., Sharda, R., Voß, S. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, Operations Research/Computer Science Interfaces Series, vol. 43, pp. 221–237. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Khouadjia, M.R., Sarasola, B., Alba, E., Jourdan, L., Talbi, E.G.: A comparative study between dynamic adapted PSO and VNS for the vehicle routing problem with dynamic requests. Appl. Soft Comput. 12(4), 1426–1439 (2012)

    Article  Google Scholar 

  • Larsen, A., Madsen, O.B., Solomon, M.M.: Recent developments in dynamic vehicle routing systems. In: Golden, B., Raghavan, S., Wasil, E., Sharda, R., Voß, S. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, Operations Research/Computer Science Interfaces Series, vol. 43, pp. 199–218. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Le Ny, J., Feron, E.: An approximation algorithm for the curvature-constrained traveling salesman problem. In: Proceedings of the 43rd Annual Allerton Conference on Communications, Control and Computing (2005)

  • Le Ny, J., Feron, E., Frazzoli, E.: On the dubins traveling salesman problem. IEEE Trans. Autom. Control 57(1), 265–270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, X., Castañón, D.A.: Receding horizon planning for dubins traveling salesman problems. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5453–5458 (2006)

  • Macharet, D.G., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.: Nonholonomic path planning optimization for Dubins’ vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA’2011), pp. 4208–4213 (2011)

  • Macharet, D.G., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.: An evolutionary approach for the Dubins’ traveling salesman problem with neighborhoods. In: 21th Genetic and Evolutionary Computation Conference (2012a)

  • Macharet, D.G., Alves Neto, A., da Camara Neto, V.F., Campos, M.F.M.: Data gathering tour optimization for Dubins’ vehicles. In: IEEE Congress on Evolutionary Computation (2012b)

  • Macharet, D.G., Neto, A.A., da Camara Neto, V.F., Campos, M.F.M.: Efficient target visiting path planning for multiple vehicles with bounded curvature. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3830–3836 (2013)

  • Medeiros, A., Urrutia, S.: Discrete optimization methods to determine trajectories for Dubins’ vehicles. Electron. Notes Discret. Math. 36, 17–24 (2010). international Symposium on Combinatorial Optimization (ISCO)

    Article  MATH  Google Scholar 

  • Obermeyer, K.J., Oberlin, P., Darbha, S.: Sampling-based roadmap methods for a visual reconnaissance UAV. In: AIAA Conference on Guidance, Navigation and Control (2010)

  • Pillac, V., Gendreau, M., Guret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Eur. J. Oper. Res. 225(1), 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Psaraftis, H.N.: Dynamic vehicle routing problems. In: Golden, B.L., Assad, A.A. (eds.) Vehicle Routing: Methods and Studies, Studies in Management Science and Systems, vol. 16, pp. 223–248. North-Holland, Amsterdam (1988)

    Google Scholar 

  • Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems: three decades and counting. Networks 67(1), 3–31 (2016). https://doi.org/10.1002/net.21628

    Article  MathSciNet  Google Scholar 

  • Savla, K., Frazzoli, E., Bullo, F.: On the point-to-point and traveling salesperson problems for dubins’ vehicle. In: IEEE American Control Conference (ACC), vol. 2, pp. 786–791 (2005)

  • Savla, K., Frazzoli, E., Bullo, F.: Traveling salesperson problems for the dubins’ vehicle. IEEE Trans. Autom. Control 53(6), 1378–1391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Shanmugavel, M., Tsourdos, A., White, B., Żbikowski, R.: Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs. Control Eng. Pract. 18(9), 1084–1092 (2010)

    Article  Google Scholar 

  • Shkel, A.M., Lumelsky, V.: Classification of the Dubins’ set. Robot. Auton. Syst. 34(4), 179–202 (2001)

    Article  MATH  Google Scholar 

  • Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Yadlapalli, S., Malik, W., Rathinam, S., Darbha, S.: A lagrangian-based algorithm for a combinatorial motion planning problem. In: Proceedings of the 46th IEEE Conference on Decision and Control (CDC), pp. 5979–5984 (2007)

  • Yu, X., Hung, J.Y.: A genetic algorithm for the Dubins Traveling Salesman Problem. In: Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE), pp. 1256–1261 (2012)

  • Yuan, B., Orlowska, M., Sadiq, S.: On the optimal robot routing problem in wireless sensor networks. IEEE Trans. Knowl. Data. Eng. 19(9), 1252–1261 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was developed with support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Fundação Centro de Análise, Pesquisa e Inovação Tecnológica (FUCAPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Macharet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macharet, D.G., Alves Neto, A., da Camara Neto, V.F. et al. Dynamic region visit routing problem for vehicles with minimum turning radius. J Heuristics 24, 83–109 (2018). https://doi.org/10.1007/s10732-017-9359-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-017-9359-4

Keywords

Navigation