Skip to main content
Log in

A UAV location and routing problem with spatio-temporal synchronization constraints solved by ant colony optimization

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

In this study, we introduce an optimization problem which attempts to optimize location and routing of a homogeneous unmanned aerial vehicle fleet. The problem also allocates the available capacity to the potential locations while it sustains the feasibility defined by synchronization constraints which include time windows at visited points, capacity monitoring in the stations and a limited number of multiple sorties. A mixed integer linear programming formulation for the problem is given and a heuristic method based on ant colony optimization approach is suggested. The suggested heuristic is compared to a commercial solver, a greedy heuristic and a simpler version of the suggested heuristic. We have observed that the suggested heuristic provides the best solutions, while the commercial solver is able to produce only poor solutions in longer time periods. The learning component, which is the main difference between the suggested heuristic and its simplified version, makes a significant change. The results of the experiments strongly suggest the usage of our metaheuristic method for the introduced problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn, J., De Weck, O., Hoffman, J.: An optimization framework for global planetary surface exploration campaigns. J. Br. Interplanet. Soc. 61(12), 487 (2008)

    Google Scholar 

  • Ahn, J., de Weck, O., Geng, Y., Klabjan, D.: Column generation based heuristics for a generalized location routing problem with profits arising in space exploration. Eur. J. Oper. Res. 223(1), 47–59 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Akca, Z., Berger, R.T., Ralphs, T.K.: A branch-and-price algorithm for combined location and routing problems under capacity restrictions. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-Infrastructure. Operations Research/Computer Science Interfaces, vol. 47. Springer, Boston, MA (2009)

    Google Scholar 

  • Archetti, C., Hertz, A., Speranza, M.G.: Metaheuristics for the team orienteering problem. J. Heuristics 13(1), 49–76 (2007)

    Article  Google Scholar 

  • Arkin, E.M., Mitchell, J.S., Narasimhan, G.: Resource-constrained geometric network optimization. In: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 307–316. ACM (1998)

  • Baldacci, R., Mingozzi, A., Wolfler Calvo, R.: An exact method for the capacitated location-routing problem. Oper. Res. 59(5), 1284–1296 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Barreto, S., Ferreira, C., Paixao, J., Santos, B.S.: Using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 179(3), 968–977 (2007)

    Article  MATH  Google Scholar 

  • Belenguer, J.M., Benavent, E., Prins, C., Prodhon, C., Calvo, R.W.: A branch-and-cut method for the capacitated location-routing problem. Comput. Oper. Res. 38(6), 931–941 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A.: Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 69, 163–178 (2014)

    Article  Google Scholar 

  • Boudahri, F., Aggoune-Mtalaa, W., Bennekrouf, M., Sari, Z.: Application of a clustering based location-routing model to a real agri-food supply chain redesign. In: Nguyen, N., Trawiński, B., Katarzyniak, R., Jo G.S. (eds.) Advanced Methods for Computational Collective Intelligence. Studies in Computational Intelligence, pp. 323–331. Springer, Berlin (2013)

    Chapter  Google Scholar 

  • Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR Q. J. Oper. Res. 5(3), 211–230 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Browne, R.: New Navy Contract Aims to Equip Hundreds of Ships with Drones (2016). Retrieved from http://www.cnn.com/2016/01/06/politics/dronesaircraft-carriers-small-navy-ships/

  • Butt, S.E., Cavalier, T.M.: A heuristic for the multiple tour maximum collection problem. Comput. Oper. Res. 21(1), 101–111 (1994)

    Article  MATH  Google Scholar 

  • Butt, S.E., Ryan, D.M.: An optimal solution procedure for the multiple tour maximum collection problem using column generation. Comput. Oper. Res. 26(4), 427–441 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Byman, D.: Why drones work: the case for Washington’s weapon of choice. Foreign Aff. 92(4), 32–43 (2013)

    Google Scholar 

  • Chao, I., Golden, B., Wasil, E.: Theory and methodology—the team orienteering problem. Eur. J. Oper. Res. 88, 464–474 (1996)

    Article  MATH  Google Scholar 

  • Chircop, J., Buckingham, C.D.: A multiple pheromone ant clustering algorithm. In: Terrazas, G., Otero, F., Masegosa, A. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2013). Studies in Computational Intelligence, pp. 13–27. Springer, Cham (2014)

    Chapter  Google Scholar 

  • Christof, N., Eilon, S.: Expected distances in distribution problems. Oper. Res. Q. 20(4), 437 (1969)

    Article  Google Scholar 

  • Contardo, C., Cordeau, J.F., Gendron, B.: A Branch-and-Cut-and-Price Algorithm for the Capacitated Location-Routing Problem. Technical Report CIRRELT-2011-44, Université de Montréal, Canada (2011)

  • Cura, T.: An artificial bee colony algorithm approach for the team orienteering problem with time windows. Comput. Ind. Eng. 74, 270–290 (2014)

    Article  Google Scholar 

  • Dang, D.C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving the team orienteering problem. In: Gomes, C., Sellmann, M. (eds.) International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol. 7874. Springer, Heidelberg (2013)

  • Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds) Handbook of Metaheuristics, International Series in Operations Research & Management Science, vol. 146. Springer, Boston, MA (2010)

    Google Scholar 

  • Drexl, M., Schneider, M.: A survey of variants and extensions of the location-routing problem. Eur. J. Oper. Res. 241(2), 283–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Duhamel, C., Lacomme, P., Prins, C., Prodhon, C.: A GRASP x ELS approach for the capacitated location-routing problem. Comput. Oper. Res. 37(11), 1912–1923 (2010)

    Article  MATH  Google Scholar 

  • El-Hajj, R., Dang, D.C., Moukrim, A.: Solving the team orienteering problem with cutting planes. Comput. Oper. Res. 74, 21–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferreira, J., Quintas, A., Oliveira, J.A., Pereira, G.A.B., Dias, L.: Solving the team orienteering problem: developing a solution tool using a genetic algorithm approach. In: Snášel V., Krömer P., Köppen M., Schaefer G. (eds) Soft Computing in Industrial Applications. Advances in Intelligent Systems and Computing, vol. 223. Springer, Cham (2014)

    Google Scholar 

  • Fowler, M.: The future of unmanned aerial vehicles. Glob. Secur. Intell. Stud. 1(1), 3 (2015)

    Google Scholar 

  • Glade, D.: (2000) Unmanned Aerial Vehicles: Implications for Military Operations (Occasional Paper No. 16, Center for Strategy and Technology, Air War College, pp. 17–19). Air University, Maxwell Air Force Base, CA (2000)

  • Glover, F.W., Kochenberger, G.A. (eds.): Handbook of Metaheuristics, vol. 57. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Goraj, Z.: Civilian unmanned aerial vehicles—overview of European effort and challenges for the future. Aviat. J. Vilnius 7(1), 3–15 (2003)

    Google Scholar 

  • Haddal, C.C., Gertler, J.: Homeland Security: Unmanned Aerial Vehicles and Border Surveillance. Library of Congress Washington DC Congressional Research Service (2010)

  • Hu, Q., Lim, A.: An iterative three-component heuristic for the team orienteering problem with time windows. Eur. J. Oper. Res. 232(2), 276–286 (2014)

    Article  MATH  Google Scholar 

  • Johnston, P.B., Sarbahi, A.K.: The impact of US drone strikes on terrorism in Pakistan. Int. Stud. Q. 60(2), 203–219 (2016)

    Article  Google Scholar 

  • Karoum, B., Elbenani, B.: Clonal selection algorithm for the team orienteering problem. In: Intelligent Systems: Theories and Applications (SITA), 2016 11th International Conference on, pp. 1–5. IEEE (2016)

  • Kataoka, S., Morito, S.: An algorithm for single constraint maximum collection problem. J. Oper. Res. Soc. Jpn. 31(4), 515–530 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Katsigiannis, P., Misopolinos, L., Liakopoulos, V., Alexandridis, T.K., Zalidis, G.: An autonomous multi-sensor UAV system for reduced-input precision agriculture applications. In: Control and Automation (MED), 2016 24th Mediterranean Conference on, pp. 60–64. IEEE (2016)

  • Ke, L., Zhai, L., Li, J., Chan, F.T.: Pareto mimic algorithm: an approach to the team orienteering problem. Omega 61, 155–166 (2016)

    Article  Google Scholar 

  • Keshtkaran, M., Ziarati, K., Bettinelli, A., Vigo, D.: Enhanced exact solution methods for the team orienteering problem. Int. J. Prod. Res. 54(2), 591–601 (2016)

    Article  Google Scholar 

  • Labadie, N., Melechovský, J., Calvo, R.W.: Hybridized evolutionary local search algorithm for the team orienteering problem with time windows. J. Heuristics 17(6), 729–753 (2011)

    Article  MATH  Google Scholar 

  • Labadie, N., Mansini, R., Melechovský, J., Calvo, R.W.: The team orienteering problem with time windows: an lp-based granular variable neighborhood search. Eur. J. Oper. Res. 220(1), 15–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Laliberte, A.S., Rango, A.: Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Trans. Geosci. Remote Sens. 47(3), 761–770 (2009)

    Article  Google Scholar 

  • Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Appl. Math. 26(2–3), 193–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Laporte, G., Nobert, Y.: An exact algorithm for minimizing routing and operating costs in depot location. Eur. J. Oper. Res. 6(2), 224–226 (1981)

    Article  MATH  Google Scholar 

  • Lin, S.W., Vincent, F.Y.: A simulated annealing heuristic for the team orienteering problem with time windows. Eur. J. Oper. Res. 217(1), 94–107 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes, R.B., Ferreira, C., Santos, B.S., Barreto, S.: A taxonomical analysis, current methods and objectives on location-routing problems. Int. Trans. Oper. Res. 20(6), 795–822 (2013)

    MathSciNet  MATH  Google Scholar 

  • Montemanni, R., Gambardella, L.M.: An ant colony system for team orienteering problems with time windows. Found. Comput. Decis. Sci. 34(4), 287 (2009)

    MATH  Google Scholar 

  • Montemanni, R., Weyland, D., Gambardella, L.M.: An enhanced ant colony system for the team orienteering problem with time windows. In: Computer Science and Society (ISCCS), 2011 International Symposium on, pp. 381–384. IEEE (2011)

  • Murphy, D., Cycon, J.: Applications for mini VTOL UAV for law enforcement. In: SPIE Proc. 3577: Sensors, C3I, Information, and Training Technologies for Law Enforcement, Boston, MA, 3–5 November 1998. http://www.spawar.navy.mil/robots/pubs/spie3577.pdf

  • Nagy, G., Salhi, S.: Location-routing: issues, models and methods. Eur. J. Oper. Res. 177(2), 649–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Ngenkaew, W., Ono, S., Nakayama, S.: The deposition of multiple pheromones in ant-based clustering. Int. J. Innov. Comput. Inf. Control 4(7), 1349–4198 (2008)

    Google Scholar 

  • Poggi, M., Viana, H., Uchoa, E.: The team orienteering problem: formulations and branch-cut and price. In: OASIcs-OpenAccess Series in Informatics, vol. 14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

  • Prins, C., Prodhon, C., Calvo, R.W.: Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4OR Q. J. Oper. Res. 4(3), 221–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Prodhon, C., Prins, C.: A survey of recent research on location-routing problems. Eur. J. Oper. Res. 238(1), 1–17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Salhi, S., Rand, G.K.: The effect of ignoring routes when locating depots. Eur. J. Oper. Res. 39(2), 150–156 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Souffriau, W., Vansteenwegen, P., Berghe, G.V., Van Oudheusden, D.: A path relinking approach for the team orienteering problem. Comput. Oper. Res. 37(11), 1853–1859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: The multiconstraint team orienteering problem with multiple time windows. Transp. Sci. 47(1), 53–63 (2013)

    Article  MATH  Google Scholar 

  • Stützle, T., Hoos, H.: MAX–MIN ant system and local search for the traveling salesman problem. In: IEEE International Conference on Evolutionary Computation (ICEC’97) (1997)

  • Stützle, T., Hoos, H.H.: MAX–MIN ant system. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  MATH  Google Scholar 

  • Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem. Comput. Oper. Res. 32(6), 1379–1407 (2005)

    Article  MATH  Google Scholar 

  • Ting, C.J., Chen, C.H.: A multiple ant colony optimization algorithm for the capacitated location routing problem. Int. J. Prod. Econ. 141(1), 34–44 (2013)

    Article  MathSciNet  Google Scholar 

  • Tozer, T., Grace, D., Thompson, J., Baynham, P.: UAVs and HAPs-potential convergence for military communications. In: Military Satellite Communications (Ref. No. 2000/024), IEE Colloquium on, p. 10-1. IET (2000)

  • Tricoire, F., Romauch, M., Doerner, K.F., Hartl, R.F.: Heuristics for the multi-period orienteering problem with multiple time windows. Comput. Oper. Res. 37(2), 351–367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: A detailed analysis of two metaheuristics for the team orienteering problem. In: Engineering Stochastic Local Search, Lecture Notes in Computer Science, vol. 5752, pp. 110–114 (2009a)

  • Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: A guided local search metaheuristic for the team orienteering problem. Eur. J. Oper. Res. 196(1), 118–127 (2009b)

    Article  MATH  Google Scholar 

  • Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Metaheuristics for tourist trip planning. In: Metaheuristics in the Service Industry, pp. 15–31. Springer, Berlin (2009c)

  • Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem: a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Waharte, S., Trigoni, N.: Supporting search and rescue operations with UAVs. In: Emerging Security Technologies (EST), 2010 International Conference on, pp. 142–147. IEEE (2010)

  • Wong, K.C.: Unmanned Aerial Vehicles (UAVS). Department of Aeronautical Engineering, University of Sydney, Camperdown, Australia (2006)

  • Yakıcı, E.: Solving location and routing problem for UAVs. Comput. Ind. Eng. 102, 294–301 (2016a)

    Article  Google Scholar 

  • Yakıcı, E.: Generalization of a UAV location and routing problem by time windows. J. Nav. Sci. Eng. 12(2), 67–78 (2016b)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ertan Yakıcı.

Appendix

Appendix

To define the feasible space and objective function of the discussed problem formally as an MILP formulation, the notation for indices, sets, parameters, variables are given below.

Sets:

u \( \in \) U :

set of UAVs.

i, j\( \in \)I:

set of interest points.

i, j\( \in \)S:

set of stations.

k \( \in \) K :

set of platforms (ships).

p \( \in \) P :

set of periods (sorties).

t \( \in \) T :

set of time.

Parameters:

p i :

importance of interest point i.

d ij :

expected time in flight between i and j.

t i :

expected time on interest point or on station i (when refueling).

y max :

maximum number of active stations allowed.

b i :

beginning time for time window of interest point i.

e i :

ending time for time window of interest point i.

t max :

maximum time between first takeoff and last landing.

C k :

capacity of platform k.

FT :

maximum flight time before refueling.

Variables:

X ijup :

binary variable indicating if UAV u has a leg from point i to point j in period p, or not.

Y i :

binary variable indicating if station i is activated, or not.

S ki :

binary variable indicating if platform k is assigned to station i, or not.

PL iu :

binary variable indicating if UAV u is assigned to station i, or not.

A uip :

arrival time of UAV u to interest point or station i in period p.

AR uipt :

binary variable indicating if UAV u arrives to station i in period p before time t, or not.

DE uipt :

binary variable indicating if UAV u departures from station i in period p before time t, or not.

D uip :

departure time of UAV u from station i in period p.

F ijup :

a continuous variable used to prevent subtours.

Since the formulation of the problem takes several pages, for the ease of reading, we give the formulation along with explanations of the objective function and the constraints.

The objective function (A1) aims to maximize the total of importance values collected from interest points while it tries to avoid unnecessary assignments of ships to stations. ε represents a small positive real number.

$$ {\rm max} z = \mathop \sum \limits_{j \in I \cup S} \mathop \sum \limits_{i \in I} \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} X_{jiup} p_{i} - \mathop \sum \limits_{k \in K} \mathop \sum \limits_{i \in S} S_{ki} *\varepsilon $$
(A1)

Constraint (A2) limits the number of stations that can be activated.

$$ \mathop \sum \limits_{i \in S} Y_{i} \le y_{max} $$
(A2)

Constraints (A3 and A4) force each UAV to start its route from only one station which is active, for each period.

$$ \mathop \sum \limits_{j \in I} \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} X_{ijup} \le Y_{i} \left| I \right|\quad \forall i \in S $$
(A3)
$$ \mathop \sum \limits_{i \in S} \mathop \sum \limits_{j \in I} X_{ijup} \le 1\quad \forall u \in U,p \in P $$
(A4)

Constraint (A5) serves as flow conservation as in its widely known classical meaning.

$$ \mathop \sum \limits_{i \in I \cup S} X_{ijup} = \mathop \sum \limits_{i \in I \cup S} X_{jiup} \quad \forall j \in I, u \in U,p \in P $$
(A5)

Constraint (A6) limits the departures from interest points to one.

$$ \mathop \sum \limits_{i \in I \cup S} \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} X_{jiup} \le 1\quad \forall j \in I $$
(A6)

Constraints (A7 and A8) prevent infeasible tours, where ε is a small positive real number.

$$ \mathop \sum \limits_{i \in I \cup S} \mathop \sum \limits_{u \in U} F_{jiup} - \mathop \sum \limits_{i \in I \cup S} \mathop \sum \limits_{u \in U} F_{ijup} \le \varepsilon * \mathop \sum \limits_{i \in I \cup S} \mathop \sum \limits_{u \in U} X_{ijup} \quad \forall j \in I,p \in P $$
(A7)
$$ F_{ijup} \le X_{ijup} \quad \forall i \in I \cup S, j \in I \cup S,u \in U,p \in P $$
(A8)

Constraint (A9) ensures that if the station is not active, UAV cannot land on that station at any period.

$$ \mathop \sum \limits_{j \in I} \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} X_{jiup} \le Y_{i} \left| I \right|\quad \forall i \in S $$
(A9)

Constraint (A10) forces each UAV to land on at most one station at any period.

$$ \mathop \sum \limits_{i \in S} \mathop \sum \limits_{j \in I} X_{jiup} \le 1\quad \forall u \in U,p \in P $$
(A10)

Constraint (A11) ensures that if a UAV takes off in a period, it must land.

$$ \mathop \sum \limits_{i \in S} \mathop \sum \limits_{j \in I} X_{ijup} = \mathop \sum \limits_{i \in S} \mathop \sum \limits_{j \in I} X_{jiup} \quad \forall u \in U,p \in P $$
(A11)

Constraints (A12A14) provide the satisfaction of time window restrictions, while Constraint (A15) ensures that all UAVs should return to a station before its fuel is exhausted, where arrival time to the station cannot be smaller than the sum of the arrival time to the last interest point, the elapsed time on the last interest point and the elapsed time in flight between the last interest point and the station. The constant M, used in Constraints (A12A15), represents a positive real number greater than tmax.

$$ A_{ujp} \le \left( {1 - \mathop \sum \limits_{i \in I \cup S} X_{ijup} } \right) M + E_{j} \quad \forall j \in I, u \in U,p \in P $$
(A12)
$$ A_{ujp} \ge \left( {\mathop \sum \limits_{i \in I \cup S} X_{ijup} - 1} \right) M + B_{j} \quad \forall j \in I, u \in U,p \in P $$
(A13)
$$ A_{ujp} \ge A_{uip} + X_{ijup} t_{i} + d_{ij} + \left( {X_{ijup} - 1} \right) M\quad \forall i \in I \cup S,\forall j \in I, u \in U,p \in P $$
(A14)
$$ A_{ujp} + t_{i} + X_{jiup} d_{ij} + \left( {X_{jiup} - 1} \right) M \le A_{uip} \quad \forall i \in S, j \in I, u \in U,p \in P $$
(A15)

Constraint (A16) forces each platform to be assigned at most to one station.

$$ \mathop \sum \limits_{i \in S} S_{ki} \le 1\quad \forall k \in K $$
(A16)

Constraint (A17) ensures that if the station is not active, no platform can be assigned to that station.

$$ \mathop \sum \limits_{k \in K} S_{ki} \le Y_{i} \left| K \right|\quad \forall i \in S $$
(A17)

Constraint (A18) limits the departures from station to interest point.

$$ D_{uip} + X_{ijup} d_{ij} + \left( {X_{ijup} - 1} \right)t_{max} \le A_{ujp} \quad \forall i \in S, j \in I, u \in U,p \in P $$
(A18)

Constraint (A19) limits that the number of UAVs assigned to a station cannot exceed the total capacity of platforms which are assigned to that station.

$$ \mathop \sum \limits_{u \in U} PL_{iu} \le \mathop \sum \limits_{k \in K} S_{ki} C_{k} \quad \forall i \in S $$
(A19)

Constraint (A20) forces that each UAV can be assigned at most to one station.

$$ \mathop \sum \limits_{i \in S} PL_{iu} \le 1\quad \forall u \in U $$
(A20)

At the first period, constraint (A21) forces that each UAV can only depart from the station to which it is assigned. For successor periods, constraint (A22) forces that each UAV can only depart from the station which it arrives at the previous period.

$$ PL_{iu} \ge \mathop \sum \limits_{j \in I} X_{ijup,p = 1} \quad \forall i \in S, u \in U $$
(A21)
$$ \mathop \sum \limits_{j \in I} X_{{jiup^{{\prime }} ,p^{{\prime }} + 1 = p}} \ge \mathop \sum \limits_{j \in I} X_{ijup} \quad \forall i \in S, u \in U, p,p^{{\prime }} \in P,p \Leftrightarrow p \ge 2 $$
(A22)

Constraint (A23 and A24) declares that departure/arrival time from a station cannot be later than tmax and if there is no departure/arrival, the value of corresponding variables must be equal to zero.

$$ D_{uip} \le \mathop \sum \limits_{j \in I} X_{ijup} t_{max} \quad \forall i \in S, u \in U, p \in P $$
(A23)
$$ A_{uip} \le \mathop \sum \limits_{j \in I} X_{jiup} t_{max} \quad \forall i \in S, u \in U, p \in P $$
(A24)

Constraints (A25A31) limit the capacity of each station at each time from the beginning to the end of operations.

$$ \mathop \sum \limits_{t \in T} DE_{uipt} \le \mathop \sum \limits_{j \in I} X_{ijup} t_{max} \quad \forall i \in S, u \in U, p \in P $$
(A25)
$$ \mathop \sum \limits_{t \in T} DE_{uipt} \le t_{max} - D_{uip} + 1\quad \forall i \in S, u \in U, p \in P $$
(A26)
$$ \mathop \sum \limits_{t \in T} AR_{uipt} \le \mathop \sum \limits_{j \in I} X_{jiup} t_{max} \quad \forall i \in S, u \in U, p \in P $$
(A27)
$$ \mathop \sum \limits_{t \in T} AR_{uipt} \le t_{max} - A_{uip} + 1\quad \forall i \in S, u \in U, p \in P $$
(A28)
$$ (t - D_{uip} )/t \le DE_{uipt} + \left( {1 - \mathop \sum \limits_{j \in I} X_{ijup} } \right)\quad \forall i \in S, u \in U,p \in P,t \in T $$
(A29)
$$ (t - A_{uip} ) /t \le AR_{uipt} + \left( {1 - \mathop \sum \limits_{j \in I} X_{jiup} } \right)\quad \forall i \in S, u \in U,p \in P,t \in T $$
(A30)
$$ \mathop \sum \limits_{u \in U} PL_{iu} - \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} DE_{uipt} + \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} AR_{uipt} \le \mathop \sum \limits_{k \in K} S_{ki} C_{k} \quad \forall i \in S,t \in T $$
(A31)

Constraint (A32) prevents departure/arrival from being at the same time.

$$ \mathop \sum \limits_{i \in S} A_{uip} + \left( {1 - \mathop \sum \limits_{i \in S} \mathop \sum \limits_{j \in I} X_{ijup} } \right)t_{max} - \mathop \sum \limits_{i \in S} D_{uip} \ge 2\quad \forall u \in U,p \in P $$
(A32)

Constraint (A33) forces that if there is a departure at the first period, it has to start at least at time 1.

$$ \mathop \sum \limits_{i \in S} \mathop \sum \limits_{j \in I} X_{ijup,p = 1} \le \mathop \sum \limits_{i \in S} D_{uip,p = 1} \quad \forall u \in U $$
(A33)

At the first period, constraints (A34 and A35) force that a UAV cannot depart before expected refuel time at the station.

$$ D_{uip,p = 1} + \left( {1 - \mathop \sum \limits_{j \in I} X_{ijup,p = 1} } \right)t_{max} \ge ti\quad \forall i \in S, u \in U $$
(A34)
$$\begin{aligned} &D_{uip} + \left( {1 - \sum \limits_{j \in I} X_{ijup} } \right)\left( {t_{max} + ti} \right) - A_{{uip^{{\prime }} :p^{{\prime }} + 1 = p}}\ge ti\\ &\qquad \forall i \in S, u \in U, p,p^{{\prime }} \in P,p \Leftrightarrow p \ge 2 \end{aligned}$$
(A35)

Constraint (A36) forces that, if a UAV does not depart from a station at all, it cannot be assigned to that station.

$$ PL_{iu} \le \mathop \sum \limits_{j \in I} \mathop \sum \limits_{p \in P} X_{ijup} \quad \forall i \in S, u \in U $$
(A36)

Constraint (A37) forces that, if there is no departure/arrival to a station in any period, that station cannot be active.

$$ Y_{i} \le \mathop \sum \limits_{j \in I} \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} X_{ijup} + \mathop \sum \limits_{j \in I} \mathop \sum \limits_{u \in U} \mathop \sum \limits_{p \in P} X_{jiup} \quad \forall i \in S $$
(A37)

Constraint (A38) limits for each period that the time between departure and arrival of any UAV cannot be more than allowed flight time before refuel.

$$ \mathop \sum \limits_{i \in S} A_{uip} - \mathop \sum \limits_{i \in S} D_{uip} \le FT\quad \forall u \in U, p \in P $$
(A38)

Constraints (A39A47) identify the domains for decision variables.

$$ X_{ijup} \in \left\{ {0,1} \right\}\quad \forall i \in I \cup S, j \in I \cup S,u \in U,p \in P $$
(A39)
$$ Y_{i} \in \left\{ {0,1} \right\}\quad \forall i \in S $$
(A40)
$$ F_{ijup} \ge 0\quad \forall i \in I \cup S, j \in I \cup S,u \in U,p \in P $$
(A41)
$$ A_{ujp} \ge 0\quad \forall j \in I, u \in U,p \in P $$
(A42)
$$ S_{ki} \in \left\{ {0,1} \right\}\quad \forall i \in S, k \in K $$
(A43)
$$ PL_{iu} \in \left\{ {0,1} \right\}\quad \forall i \in S, u \in U $$
(A44)
$$ AR_{uipt} \ge 0\quad \forall i \in S,u \in U,p \in P,t \in T $$
(A45)
$$ DE_{uipt} \ge 0\quad \forall i \in S,u \in U,p \in P,t \in T $$
(A46)
$$ D_{uip} \ge 0\quad \forall i \in S,u \in U,p \in P. $$
(A47)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yılmaz, O., Yakıcı, E. & Karatas, M. A UAV location and routing problem with spatio-temporal synchronization constraints solved by ant colony optimization. J Heuristics 25, 673–701 (2019). https://doi.org/10.1007/s10732-018-9389-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-018-9389-6

Keywords

Navigation