
 1 

 

 

 

  

Diversification Methods for Zero-One Optimization 
 

 

Fred Glover 

ECEE- College of Engineering and Applied Science 

University of Colorado - Boulder 

Boulder, CO, 80309 USA 

glover@colorado.edu  

 

 

 

 

 

Abstract 

 

We introduce new diversification methods for zero-one optimization that significantly extend 

strategies previously introduced in the setting of metaheuristic search. Our methods incorporate 

easily implemented strategies for partitioning assignments of values to variables, accompanied by 

processes called augmentation and shifting which create greater flexibility and generality. We then 

show how the resulting collection of diversified solutions can be further diversified by means of 

permutation mappings, which equally can be used to generate diversified collections of 

permutations for applications such as scheduling and routing. These methods can be applied to 

non-binary vectors by the use of binarization procedures and by Diversification-Based Learning 

(DBL) procedures which also provide connections to applications in clustering and machine 

learning. Detailed pseudocode and numerical illustrations are provided to show the operation of 

our methods and the collections of solutions they create. 

 

 

 

 

Keywords: mathematical optimization; binary programming; metaheuristics; adaptive memory; 

learning. 

 

mailto:glover@colorado.edu


 2 

 

1. Introduction 

     

Diversification strategies are now widely recognized as a critical part of effective metaheuristics 

for complex optimization problems. The important class of zero-one optimization problems is 

especially relevant for designing diversification strategies, because of the wide range of 

applications in which they arise. In addition, many discrete optimization problems can be 

conveniently translated into zero-one problems or can be treated using neighborhood spaces 

equivalent to those of zero-one problems through the design of metaheuristic search methods. 

 

Diversification for zero-one optimization can also be applied to nonlinear continuous (global) 

optimization, taking advantage of the fact that binarization methods developed for converting 

discrete and continuous data into binary data (Mayoraz and Moreira, 1999) have proved to be quite 

effective for making certain types of global continuous problems susceptible to solution by zero-

one optimization, notably in the realms of cluster analysis and machine learning.  

 

Diversification is treated here in the sense proposed in adaptive memory programming (tabu 

search), where the drive to obtain diverse new solutions goes hand-in-hand with intensification 

processes, which concentrate the search more strongly in regions anticipated to contain good 

solutions. Consequently, our prescriptions are assumed to operate within contexts where 

restrictions are imposed on the search space, as in assigning bounds or fixed values to particular 

variables (e.g., in exploiting strongly determined and consistent variables; as in Glover (1977, 

2001) and Glover and Laguna (1997)). 

 

In this paper we introduce new diversification strategies for zero-one optimization that extend a 

framework for generating diverse collections of zero-one vectors originally proposed in the context 

of the Scatter Search and Path Relinking evolutionary algorithms (Glover, 1997). The two 

principal diversification strategies from this source constitute a Progressive Gap method and a 

Max/Min method.  The Progressive Gap method has been incorporated in several studies for 

applying evolutionary metaheuristics to zero-one optimization problems (see, e.g., Laguna an 

Marti, 2003), while the Max/Min method has advantages for achieving certain kinds of 

diversification, and is relevant to the topic of learning procedures for metaheuristic optimization, 

as embodied in the approach called Diversification-based Learning (DBL) (Glover and Hao, 

2017). Further connections with learning strategies derive from the fact that DBL includes 

methods for basing the treatment of general vectors on the ability to handle zero-one vectors.  

 

We begin by taking ideas underlying the Max/Min method as a starting point to provide new and 

more advanced methods for generating diversified collections of zero-one vectors, showing how to 

partition the space of solutions in more refined ways to create diverse collections. Building on this, 

we then give an Augmented-Max/Min generation method that provides greater flexibility for 

creating diversified collections, and identify an associated Shifting Procedure that extends the 

scope of these methods. Finally, we introduce permutation mappings that further enlarge the range 

of diversified solutions produced, yielding solutions with new structures through a recursive 

application of these mappings. Our methods are accompanied by numerical examples that illustrate 

their operation and the collections of solutions they create. 

 



 3 

1.1 Basic Notation and Conventions 
 

In the following, the 0-1 vectors generated are denoted by x(r), for r = 0 to rLast, where x(0) 

denotes the seed vector x = (x1, x2, …, xn). The seed vector can be provided by the user, and in the 

case of binary optimization, can be selected to be a locally optimal 0-1 solution or derived from a 

linear combination of such local optima for the problem of interest. 

 

For a given 0-1 vector x', Comp(x') denotes the complemented vector x" given by xj" = 1 – xj',  

j = 1, …, n.  

v  denotes the integer floor function which identifies the largest integer ≤ v, for any real value v.  

          (Consequently,  v + .5   is the nearest integer neighbor of v.) 

rLim is a user-selected upper limit on rLast, the number of vectors in the collection x(r), for  

r = 0 to rLast. 

 

Each point x' or x" generated is a shorthand for identifying a current point x(r). Hence, when an 

algorithm assigns a particular value xj' or xj", it is understood that xj(r)  xj' or xj(r)  xj". In 

instances where xj' and xj" are determined together, it is understood that xj' refers to x(r) and xj" 

refers to x(r+1). 

 

Several parts of this paper deal with the challenge of increasing the number of vectors to be 

included in a diversified collection. It should be noted that increasing the number of vectors 

generated does not in itself increase the diversity of the collection, or more precisely, the Mean 

Diversity measured by the value Mean(|x – y|: for all pairs (x,y) in the collection). For example, 

the greatest Mean Diversity results for a collection of just two points, consisting of a 

complementary pair (x', x"). Adding any additional point y compels the distance |x' – y| and |x" – y| 

to be less than |x' – x"|, and in general, if a set of points has been generated with a maximal Mean 

Diversity, adding more points will not increase the diversity by this measure.  

 

In general, the smaller the number of points that are generated, the greater the (mean) diversity that 

can be achieved. However, a larger number of points can increase a different type of diversity, 

which involves the “coverage” provided by the points selected. (For example, one may define 

coverage = Mean Diversity/Mean Gap, where Gap(x, y) = |x – y| restricted to pairs (x, y) such that 

there is no point z closer to x than y or closer to y than x on the line segment joining x and y.) 

Although we do not attempt here to provide formal relationships joining these notions, it should be 

clear that adding more points can indeed improve the coverage. Hence, it is useful to select the 

limit rLim to be as large as reasonably possible, taking into account the computational tradeoffs of 

working with a larger number of points, as determined by the method that utilizes these points. An 

advantage of generating additional vectors is that it helps to combine intensification with 

diversification when selecting a best vector from the resulting set. 

The tradeoffs between relative diversity and the number of vectors produced is a recurring theme 

throughout the remainder of this paper.  

 



 4 

 

2. The Max/Min 0-1 Diversification Method 

 

The strategy underlying the Max/Min algorithm, which we examine in several variations 

throughout subsequent sections, is to successively partition the indexes of x into equal sized 

subsets, so that each vector x' and its complement x" in the resulting sequence is separated from 

previous vectors by maximizing the minimum Hamming distance to these vectors. (This property 

can be achieved strictly when n is a power of 2, and can be achieved approximately for other 

values of n.)  

 

The criterion of maximizing the minimum distance between vectors in the collection generated 

rests on the following observation. If x' differs from x in half of its components, this implies that 

the complement x" of x' will likewise differ from x in half of its components, and consequently the 

minimum distance of x' and x" to x will be maximized. This same criterion also implies that x' and 

x" will be (approximately) equidistant from the vector Comp(x), and hence the property of 

maximizing the minimum separating distance will hold in relation to Comp(x) as well.  

 

2.1 Overview 

 

Let N(i), i = 1, …, iLast denote a partition of N = {1, …, n} . At each stage of the method, each set 

N(i) of the current partition is split into two equal parts (or as nearly as possible when N(i) 

contains an odd number of elements), creating a total of iLast additional sets N(i). Let v denote 

the integer ceiling of v, i.e., the least integer  v (hence v =  v  + 1 if v is fractional). 

 

To begin, iLast = 1 and N(1) = N = {1, …, n}. N(1) is then split into left and right “halves” NL(1) 

and NR(1) so that the first n' = n/2  of N(1)’s elements go in NL(1) and the remaining n – n' 

elements go in NR(1), i.e., NL(1) = {1, …,n'} and NR(1) = {n'+1, …, n}. At the conclusion of this 

split we update the partition by setting N(1) = NL(1) and N(2) = NR(1), thus doubling the number 

iLast of current sets in the partition to become 2.  

 

On the next iteration, each of N(1) and N(2) are similarly split, generating sets NL(1) and NR(1) 

from N(1) and NL(2) and NR(2) from N(2). Then the updated partition is created by redefining 

N(1) = NL(1),  N(2) = NR(1), N(3) = NL(2) and N(4) = NR(2), and thus yielding iLast = 4. In 

general, each time the sets in the partition N(i), i = 1 to iLast are split, each set N(i) is subdivided 

by the following alternating assignment rule. If i is odd, the first |N(i)|/2 elements of N(i) go into 

NL(i), while if i is even, the first  N(i)|/2 elements of N(i) go into NL(i). In each instance, 

remaining elements of N(i) go into NR(i). 

 

As each set N(i) is split, before doubling iLast, we generate a new vector x' from x by setting  

 

  xj' = 1 – xj for j  NL(i),  i = 1, …, iLast,      (2.1) 

xj' = xj for j  NR(i),  i = 1, …, iLast.      (2.2) 

 

We also generate a second vector x" = Comp(x'), or equivalently, 

 

  xj" =  xj for j  NL(i),  i = 1, …, iLast,      (2.3) 



 5 

xj" = 1 – xj for j  NR(i),  i = 1, …, iLast.     (2.4) 

 

Finally the partition is updated by defining N(2i – 1) = NL(i) and N(2i) = NR(i) for i = 1 to iLast, 

followed by doubling iLast. 

  

Each partition created by the “odd/even” rule for splitting the sets satisfies the property that |N(i)| = 

MaxNum or |N(i)| = MaxNum – 1, where MaxNum = Max(N(i), i = 1, …, iLast). Moreover, the 

organization of the method also assures MaxNum = |N(1)|. After some number of partitions have 

been generated, the value of MaxNum for the current partition will equal 2. (MaxNum may skip 

over some values as it successively decreases in the creation of new partitions, but will not skip 

over the value 2.) Once MaxNum = 2, the concluding step of the algorithm operates as follows. 

We identify the number Num2 of sets N(i) for i = 1 to iLast such that |N(i)| = 2. (Given MaxNum = 

2, the condition |N(i)| = 2 is equivalent to Last(i) > First(i). All other sets, for which |N(i)| = 1, have 

Last(i) = First(i).) If Num2 is smaller than a chosen threshold value, such as Threshold = n/16, we 

may consider that it is not worthwhile to split the sets of the partition an additional time.  

 

On the other hand, if Num2 > Threshold, then a final partition can be generated. It is relevant to 

observe how the algorithm handles the case where |N(i)| = 1. When the set N(i) contains a single 

element, e.g., N(i) = {j}, then the rule for dividing N(i) into NL(i) and NR(i) yields NL(i) = {j} and 

NR(i) =  if i is odd, and NL(i) =  and NR(i) = {j} if i is even.  In the former case, only the 

assignments (2.1) and (2.3) are relevant, while in the latter case, only (2.2) and (2.4) are relevant.   

 

The final operation of updating the partition can be skipped, since the only purpose of the 

partitions is to identify the assignments (2.1) to (2.4), and no additional assignments remain to be 

made. 

 

2.2 Implementation  

 

The algorithm can be implemented conveniently by observing there is no need to store the sets 

N(i) at each step. Instead it suffices to record just two numbers, First(i) and Last(i), which identify 

N(i) as given by N(i) = {j: First(i) ≤ j ≤ Last(i)}. The precise number of elements in a set N(i) 

currently considered, which we call SetSize, is then given by SetSize = Last(i) + 1 – First(i).  

 

N(i) can thus be split by defining Split = SetSize/2 if i is odd and Split = SetSize/2  if i is even. 

This results in creating corresponding “First” and “Last” values for the sets NL(i) and NR(i) given 

as follows: 

 

  SplitPoint = First(i) + Split – 1  

  FirstL(i) = First(i) 

  LastL(i) = SplitPoint 

  FirstR(i) = SplitPoint + 1  

  LastR(i) = Last(i) 

 

In the special case where |N(i)| = 1, the condition NL(i) =  or NR(i) =  results in FirstL(i) = 

LastL(i) + 1 or FirstR(i) = LastR(i) + 1, respectively. If the computer environment for implementing 



 6 

the method does not automatically bypass executing a loop of the form “For j = First to Last” 

under the condition First > Last, then this special situation needs to be handled separately.  

 

One further type of streamlining is useful. The steps of the algorithm can be organized so that 

NL(i) and NR(i) need not be generated separately and then used to produce a new partition, but can 

instead be generated directly as new sets N(i) themselves. This requires the use of a vector 

Location(i) that identifies the location where the current “true” set N(i) is stored.  More precisely, 

for i = 1 to iLast, the “First” and “Last” indexes that define N(i) are given by First(Loc) and 

Last(Loc) for Loc = Location(i).  

 

The detailed form of the method is as follows, where we continue to make reference to vectors x(r) 

for r = 1 to rLast that may be used to store the successive vectors x' and x" generated. The only 

input for the method is the value Threshold that determines whether a last assignment should be 

made when the number Num2 of sets with |N(i)| = 2 is small (i.e., when Num2 ≤ Threshold). 

 

Max/Min Generation Method 

iLast = 1 

First(1) = 1 

Last(1) = n 

% The next assignment remains invariant throughout the algorithm. 

Location(1) = 1 

% Generate the first two vectors x' and x" corresponding to x(0) and x(1). 

x' = x 

x" = Comp(x') 

rLast = 1 

% The iteration counter, Iter, is given a redundant bound of MaxIter = 100, noting that   

     the method will handle a problem as large as n = 2k for k = MaxIter – 1. 

MaxIter = 100 

For Iter = 1 to MaxIter   

% Each iteration creates a new partition of N and associated vectors x' and x". 

% Update the vector index rLast for recording x(rLast) = x' and x(rLast+1) = x". 

rLast = rLast + 1 

For i = 1 to iLast 

 % Split each set N(i) of the current partition for i = 1 to iLast.  

  Loc = Location(i) 

  SetSize = Last(Loc) + 1 – First(Loc) 

  If i is odd then 

   Split = SetSize/2 

  Else 

   Split = SetSize/2   

  Endif 

  SplitPoint = First(Loc) + Split – 1  

  FirstL= First(Loc) 

  LastL= SplitPoint 

  FirstR = SplitPoint + 1  

  LastR = Last(Loc) 



 7 

% The next two loops carry out the assignments (1) – (4).  

% (If FirstL > LastL or FirstR > LastR, the corresponding 

     loop should be skipped.) 

  For j = FirstL to LastL 

   xj' = 1 – xj 

   xj" = xj 

  Endfor (j) 

  For j = FirstR to LastR 

   xj' = xj 

   xj" = 1 - xj 

  Endfor (j) 

  % First(Loc) = FirstL already is true 

  Last(Loc) = LastL 

  First(Loc + iLast) = FirstR 

  Last(Loc + iLast) = LastR 

Endfor (i) 

rLast = rLast + 1 

If rLast  rLim then Stop. 

% Identify MaxNum = |N(1)|  (Location(1) = 1 is invariant). 

MaxNum = Last(1) + 1 – First(1) 

If MaxNum = 1 then 

% All vectors x' and x" have been generated. No need to update the final partition. 

 Stop 

Endif 

% Update the partitions by updating the Location(i) array, to assure that  

     Loc = Location(i) identifies where N(i) is stored for i = 1 to iLast. 

For i = iLast to 1 (-1)   % i = iLast, iLast – 1, …, 1   

 Loc = Location(i) 

 Location(2i – 1) = Loc 

 Location(2i) = Loc + iLast 

Endfor (i) 

iLast = 2iLast 

If MaxNum = 2 then 

% Identify the number Num2 of sets having |N(i)| = 2. Don’t need to use  

    Loc = Location(i) since the order of the sets doesn’t matter. 

  Num2 = 0 

  For i = 1 to iLast 

   If Last(i) > First(i) then 

    Num2 = Num2 + 1 

  Endif 

 Endfor (i) 

 If Num2 ≤ Threshold then 

% Skip generating a final assignment. All relevant x' and x"  

     vectors have been generated. 

Stop 

  Endif 



 8 

 Endif 

Endfor (Iter) 

 

The number of iterations of the method within the “For Iter = 1 to MaxIter” loop will equal log2n  

or 1 + log2n , depending on whether the method stops because Num2 ≤ Threshold.  (Hence the 

algorithm produces either 2log2n  or 2 + 2log2n  vectors in total.)  

 

2.3 Illustration 

 

We illustrate the method applied to the case for N = {1, 2, …, 11}. The outcomes for each iteration 

are shown in a block headed by “Iter = 1,” “Iter = 2,” and so forth. Each set N(i) for the current Iter 

is identified within “{  }” brackets, immediately below the value shown for the associated index i. 

Following this are the symbols “L” and “R” identifying the sets NL(i) and NR(i), which are 

depicted in the form {(NL(i)) (NR(i))}. Thus, for example, in the block for Iter = 3, the grouping 

{(7  8) (9  10 11)} beneath i = 2 discloses that NL(2) = {7, 8} and NR(2) = {9, 10, 11}.  

 

Following the rules of the algorithm, when a set N(i) cannot be divided into two equal left and 

right halves, NL(i) is the “larger half” or “smaller half” according to whether i is odd or even. 

Consequently, for Iter = 3 and i = 2, where i is even, the set NL(2) is the smaller half of N(2) 

(containing 2 elements compared to the 3 elements of NR(2)). 

 

The vectors x' and x" illustrated are based on assuming the seed vector x is the 0 vector. Hence the 

first two vectors generated (not shown) are x' = (0, 0, …, 0) and x" = (1, 1, …, 1).  

 

It should be pointed out that the partition shown at the beginning of each iteration is actually the 

one that is created by the updating operation at the conclusion of the preceding iteration. (The 

partition for Iter = 1 is the full set N, which is created as the initial N(1) outside the main loop, 

before Iter is assigned a value.) Listing the partitions in this way gives a better picture of the way 

the method operates, but provides a slight distortion concerning the termination condition. In 

particular, the value of MaxNum = |N(1)| shown at the beginning of each iteration is the MaxNum 

value identified by the algorithm at the conclusion of the preceding iteration. Consequently, as 

indicated below, the method terminates for this example at the end of Iter = 4, since the value 

MaxNum  = 1 that triggers this termination is identified at the conclusion of this iteration.  

 

Iter = 1 

MaxNum = |N(1)| = 11 

i =                            1            

          {1  2  3  4  5  6  7  8  9 10 11} 

                     L                      R 

       {(1  2  3  4  5  6)  (7  8  9 10 11)} 

x'  =   1  1  1  1  1  1     0  0  0  0   0 

x" =   0  0  0  0  0  0     1  1  1  1   1 

 

Iter = 2 

MaxNum = |N(1)| = 6 

i =                 1                          2 



 9 

         {1  2  3  4  5  6}    {7 8  9 10  11} 

              L           R             L          R 

      {(1  2  3) (4  5  6)} {(7  8) (9  10 11)} 

x'  =  1  1  1    0  0  0       1  1    0   0    0         

x" =  0  0  0    1  1  1       0  0    1   1    1         

 

Iter = 3 

MaxNum = |N(1)| = 3 

i =          1                  2                3                4 

        {1  2  3}      {4  5  6}      {7  8}      {9  10  11}  

            L    R         L     R         L    R       L        R  

      {(1  2) (3)}  {(4) (5  6)}  {(7) (8)}  {(9) (10  11)} 

x'  =  1  1   0         1   0  0         1   0         1      0    0 

x" =  0  0   1         0   1  1         0   1         0      1    1 

 

Iter = 4 

MaxNum = |N(1)| = 2 

i =        1          2          3           4           5        6         7             8 

        {1  2}     {3}     {4}      {5  6}     {7}    {8}     {9}     {10  11} 

         L    R       R        L        L    R       L        R        L         L     R 

      {(1) (2)}  {(3)}  {(4)}  {(5) (6)}  {(7)}  {(8)}  {(9)}  {(10) (11)} 

x'  =  1    0         0        1         1   0         1        0         1          1     0 

x" =  0    1         1        0         0   1         0        1         0          0     1 

 

The method Stops at this point (by identifying MaxNum = |N(1)| = 1). 

 

Appendix 2 gives a “balanced” variant of the Max/Min approach that more nearly assures the 

number of complemented and un-complemented elements are equal.  

 

2.4 Modifying x' to Produce Different Numbers of Complemented Variables 

 

We may modify the vector x' produced at each stage of the method by changing the treatment of 

every second or every third element such that xj' = 1 – xj by instead setting xj' = xj (e.g., setting x4', 

x7' and x10' equal to 0 in the last iteration of the illustration above if every second complemented 

element is changed, and setting x5' and x10' equal to 0 if every third complemented element is 

changed.). Similarly, we may replace every second or third element such that xj' = xj by instead 

setting xj' = 1 – xj (which sets x3' and x8' equal to 1 in the last iteration of the preceding illustration 

if every second such element is changed, and sets just x6' equal to 1 if every third such element is 

changed).  

 

This departs from the Max/Min approach, which generates vectors consisting of approximately 

equal numbers of complemented and un-complemented elements, to produce vectors containing 

approximately 1/4 complemented and 3/4 un-complemented elements (or vice versa) if every 

second element designated element is changed, and approximately 1/3 complemented and 2/3 un-

complemented elements (or vice versa) if every third designated element is changed. This 

additional collection of vectors, when added to the collection generated directly by the Max/Min 



 10 

approach, produces greater variety in the types of vectors produced, though with the outcome that 

the members of this larger collection are less diverse relative to each other.  

 

The next section provides a “Augmented-Max/Min” approach that generates additional vectors by 

an easily implemented alternative rule. 

 

 

3. Augmented-Max/Min Diversification Generator 

 

The Augmented-Max/Min generation method, as in the case of the Max/Min generation approach, 

undertakes to subdivide N successively into k different approximately equal sized subsets, as k 

ranges over the k = 2, 4, 8, 16, …, where each subset is constructed to differ “as much as possible” 

from all others. Also, as in the Max/Min method, each subset contains approximately (n/k) + .5  

elements. Beyond this, however, the Augmented-Max/Min approach includes numbers of subsets 

halfway between these values, adding the values of k given by k = 3, 6, 12, … (hence k = 2p, 2p-1 + 

2p, for p = 1, 2, 3, …).  Each vector generated is accompanied by generating its complement, 

likewise as in the case of the Max/Min method. 

 

For simplicity, as we have done in the illustration for the Max/Min method, our rules to describe 

the Augmented-Max/Min method will be framed as generating binary vectors from the seed vector 

x(0) = (0, 0, …, 0). Each vector xo' thus generated can be used to create a corresponding vector x' 

“derived from” an arbitrary seed vector x by setting xj' = xj if xoj' = 0, and xj' = 1 – xj if xoj' = 1. (In 

other words, x' results by complementing those components of x for which xoj' = 1, and leaving all 

remaining components of x unchanged.)    

 

We denote the vectors generated by x((s)), for values of s =  (n/k) + .5 as k ranges over the 

values k = 2, 3, 4, 6, 8, 12, 16, …. The vector x((s)) consists of alternating strings 1’s and 0’s, each 

of size s – i.e., starting with s 1’s, followed by s 0’s, then s 1’s, and so on. The final string within 

x((s)) contains s' ≤ s components where s' is the number remaining to give the vector x((s)) a total 

of n components. (Hence, s' = n – n/s∙s, if n/s is not an integer.)  If n is a power of 2, and if we 

used only the values k = 2, 4, 8, … (that are likewise powers of 2), then the Augmented-Max/Min 

method would generate exactly the same collection of vectors as the Max/Min method. 

 

To complete the description of the Augmented-Max/Min method, we impose a lower limit  

sLim = n.5 + .5  on the size of the string s, noting that the value s = (n/k) + .5  diminishes in 

size as k grows. In particular, we interrupt the process of generating the vectors x((s)) upon 

reaching the smallest value of s such that s > sLim. At this point, we complete the process by 

generating the final vectors x((s)) for the values of s given by s = sLim – 1, sLim – 2, …, 1.  

 

3.1 Illustration 

 

For n = 51, we begin with the values s given by s = (n/k) + .5 for k = 2, 3, 4, 6 (since sLim = 

(51.5 + .5 = 7). This yields 

 

x((25)) consisting of 26 1’s followed by 25 0’s. 

x((16)) consisting of 16 1’s, then 16 0’s, then 16 1’s, then 16 0’s, then 3 1’s. 



 11 

x((12)) consisting of 12 1’s, then 12 0’s, …, then 3 1’s. 

x((8)) consisting of 8 1’s then 8 0’s, …, then 3 1’s 

 

The sequence is then completed by 

 

x((6)) consisting of 6 1’s, then 6 0’s, …, then 3 1’s 

x((5)) consisting of 5 1’s, then 5 0’s, …, then one 1. 

… 

x((1)) consisting of alternating 1’s and 0’s. 

 

3.2 Extension by a Shifting Procedure 

 

We enlarge the set x((s)) by creating an additional vector xo((s)) for each value of s > 1 by 

inserting s/2 0’s at the start of x((s)), and drop the last s/2 components of x((s)). (Hence xo((s)) 

“shifts” x((s)) to the right by s/2 components.) We do not bother to consider xo((1)) since by 

definition this vector would shift x((1)) by 0 components. (The alternative of shifting x((1)) by 1 

component is of no interest, since it just produces the complement of x((1)).)  

 

As in the case of the x((s)) vectors, we also generate the complement of each xo((s)) vector. The 

collection produced by the Augmented-Max/Min method contains somewhat more than twice the 

number of vectors produced by the Max/Min method, and the simplicity of its rules commends it 

for use as an alternative approach. As in the case of the Max/Min method, alternating 1’s in the 

x((s)) vectors may be replaced by 0’s, or alternating 0’s may be replaced by 1’s, to produce 

different balances in the numbers of components of these vectors that are complemented and un-

complemented. 

    

The next section gives the algorithm that can be used in accompaniment with the foregoing 

algorithms to generate additional diversified vectors.   

 

 

4. Expanded Diversification by Permutation Mappings  

 

We now introduce a procedure that operates by mapping a given collection of vectors into one or 

more new collections that differ from the original collection in a manner consistent with the 

concept of diversity previously employed. This procedure incorporates a method proposed in 

Glover (1997) and applied by Campos, Laguna and Marti (2005) for generating diverse 

permutations, which we modify and then extend to provide a set of additional mappings. Adapted 

to the present context, the method expands the collection of vectors x(r), r = 0 to rAdd by adding 

vectors x(r) for r ranging from r = rAdd + 1 to rLim (the chosen limit on the total number of such 

vectors produced).  

 

We make reference to a gap value g and a starting value s which s ranges from 1 to g.  We also 

refer to an iteration index k that runs from 0 to a maximum value kMax = (n – s)/g (hence 

identifying kMax to be the largest k such that the index j = s + kg satisfies j ≤ n). (The gap g and 

the indexes s and k are also used in the Progressive Gap method of Appendix 1.) 

 



 12 

In the present setting we recommend setting g =  n/2  – 1, which is particularly compatible with 

applying a recursive version of the current Permutation Mapping Algorithm in conjunction with 

the Max/Min Algorithm.  

 

4.1 Structure of the Diverse Permutations. 

 

The permutations generated derive from operating on a given vector of numbers (1, …, n), which 

we take to be the indexes of the variables xj for j = 1 to n. Within this context, we construct a 

permutation Pn(g) of (1, …, n) by reference to a series of “sub-permutations” Pn(g: s), for s = 1 to 

g, whose components are given by 

 

Pn(g: s) = (s + kg: k = 0 to kMax)  

 

or equivalently 

 

Pn(g: s) = (s, s + g, s + 2g, …, s + kMaxg). 

 

The sub-permutations Pn(g: s) can be placed end to end in any order to create Pn(g). However, we 

favor using the reverse order, hence creating  

 

Pn(g)  = (Pn(g: s): for s = g, g – 1, …, 1).  

 

4.1.1 Illustration 

 

Consider the permutation Pn(g)  for the case n = 14 and g = 6 (= n/2  – 1). The sub-permutations 

of Pn(g) are then 

 

Pn(g: 1) = (1  7  13) 

Pn(g: 2) = (2  8  14)   

Pn(g: 3) = (3  9) 

Pn(g: 4) = (4  10) 

Pn(g: 5) = (5  11) 

Pn(g: 6) = (6  12) 

 

Assembling these sub-permutations in reverse order yields 

 

Pn(g) = (6  12  5  11  4  10  3  9  2  8  14  1  7  13) 

 

4.2 Employing Pn(g) as a Permutation Mapping 

 

We treat Pn(g) as a mapping M = (m(1), m(2), …, m(n)) that generates a vector y(r) from a given 

vector x(r) by defining yj(r) = xm(j)(r). This gives rise to a new collection of diverse vectors y(r), r = 

1 to rLast from the original collection x(r), r = 1, …, rLast in the following manner. 



 13 

 

Permutation Mapping Algorithm 

 

For r = 1 to rLast 

 For j = 1 to n 

  i = m(j) 

  yj(r) = xi(r) 

 Endfor (j) 

Endfor (r) 

 

When the Permutation MappingAlgorithm is applied to enlarge a current collection of vectors x(r). 

r = 1 to rAdd, the vector yj(r) above is replaced by xj(r + rAdd) (hence xj(r + rAdd) = xi(r)) as r 

ranges from 1 to rLast, followed by re-setting rAdd = rAdd + rLast. The process can be stopped at 

point when the value r + rAdd reaches the desired limit rLim on the total number of diverse vectors 

accumulated. 

 

We now identify a way to go farther than a single application of the preceding algorithm. 

 

4.3 Recursive Permutation Mapping 

 

The mapping M = (m(1), m(2)…, m(n)) can be applied to any permutation P = (p(1), …, p(n)) of 

the indexes j = 1 to n, and not only to the initial permutation Po = (1, 2, …, n). We specifically 

define the mapping M(P) = P' = (p'(1), …, p'(n)) by 

 

  p'(j) = p(m(j)) for j = 1, ..., m.       (4.1) 

 

The foregoing mapping therefore replaces the jth element of P' by the m(j)th element of P. Note that 

if P = Po = (1, 2, …, n) then P' = M(P) = M.  

 

Since M itself can be any permutation, it follows that Po is the identity element with respect to all 

such mappings; i.e., Po(M) = M(Po) = M, taking M to be an arbitrary permutation. The inverse M-1 

of M, which yields M-1(M) = M(M-1) = Po, and whose components are denoted by by writing M-1 = 

(m-1(1), …, m-1(n)), can be identified from the following relationship: 

 

  m-1(i) = j for i = m(j), j = 1, …, n       (4.2) 

 

(hence m-1(m(j)) = j for all j, and noting that (4.2) also holds for i = 1, …,n, we also have m(m-1(i)) 

= i for all i).  

 

In the present setting, we are only interested in permutations M of the form given by M = Pn(g), for 

Pn(g) as previously identified. We may illustrate the inverse mapping by reference to the 

illustration of section 4.1.1, where 

 

       j  =   1    2   3   4   5   6   7   8   9  10  11  12  13  14  

Pn(g) = (6  12   5  11  4  10  3   9   2    8  14     1   7  13) 

 



 14 

Then applying (4.2) for M = Pn(g) to obtain the inverse, we have 

 

      j  =    1   2   3   4   5   6    7    8   9  10  11  12  13  14  

  M-1 = (12   9    7   5   3   1  13  10   8   6    4    2   14  11) 

 

(M-1 may be constructed conveniently using visual cues by looking for the successive indexes i = 

1, …, n such that m(j) = i.) 

 

4.3.1 Recursive Use of M 

 

To use M recursively, we start by applying M to Po obtain M(Po) = M as the first permutation of a 

series. This first M, which we denote by M1, is the one used to generate yj(r) = xi(r), for i = m(j), j 

= 1 to n, by the Permutation Mapping Algorithm. Then we apply the mapping M again to obtain 

the mapping M(M(Po)), or M2(Po) = M2, where we define M2 = M(M). Now apply the Permutation 

Mapping Algorithm with M replaced by M2 in its description. (I.e., we replace m(j) in this 

algorithm by m2(j), where M2 = (m2(1), …, m2(n)).) This is equivalent to redefining x(r) to be the 

vector y(r) produced by the first application of the Permutation Mapping Algorithm, followed by 

applying the algorithm in its original form (without replacing M by M2) to the resulting new x(r) 

vector.  

 

In a similar manner, we may generate the mapping M3 = M(M(M)) = M(M2) and apply the 

Permutation Mapping Algorithm with M replaced by M3 = (m3(1), …, m3(n)). Again,  

equivalently, this corresponds to applying the Permutation Mapping Algorithm unchanged to the 

“updated” vector x(r) (which is the new vector y(r) obtained from the preceding pass). The 

recursive use of M in this fashion is motivated by the expectation that each step should create a 

useful diversification relative to the vector last produced, given that M is designed to create such 

diversification relative to the permutation Po which is an arbitrary initial indexing for the variables.  

 

Eventually, for some value h  1 we obtain a “next” mapping Mh+1 = M(Mh) that yields the initial 

vector Po = (1, …, n) as its outcome, and the process cycles. The relationship M(Mh) = Po discloses 

that Mh is in fact the inverse mapping M-1. This further implies that we can obtain the same 

collection of y(r) vectors by starting with M-1 (= Mh), then continuing with M-2 =  

M-1(M-1) (= Mh-1), until finally reaching M-h (= M1 = M). In other words, starting with M-1 

generates the same collection of y(r) vectors as starting with M, but in reverse order. 

Consequently, M-1 is on an equal footing with M as a diversifying permutation mapping. (The 

vector produced by reversing the order of the components of M does not have this same footing.)   

 

When applying the mapping M recursively as indicated, the number of different y(r) vectors that 

can be produced before reaching the “last” mapping Mh grows rapidly with the value of n (using 

the definition of M = Pn(g)). Consequently, the limit rLim on the total number of vectors generated 

may be reached long before cycling occurs. (Other definitions of M can potentially produce larger 

numbers of vectors before cycling, but our primary goal remains that of producing a diverse 

collection rather than a collection containing numerous elements.) 



 15 

 

 

4.4 Illustrated Use of Recursion 

  

We illustrate this recursive process for n = 9, where only a relatively small number of mappings 

are generated before cycling. For greater scope, we apply the mapping M = Pn(g) simultaneously to 

all of the vectors produced by the Max/Min Algorithm of Section 2. For n = 9 we have g = n/2 – 

1 = 3, and hence 

 

P9(1: 3) = (1  4  7) 

P9(2: 3) = (2  5  8) 

P9(3: 3) = (3  6  9)   

 

to yield 

 

M = Pn(g) = (3  6  9  2  5  8  1  4  7) 

 

The first (upper left) section of Table 1 below shows the 8 vectors produced by the Max/Min 

Algorithm, and lists the indexes j = 1 to n, the mapping M and the initial vector Po (shown as P0) 

above them. The next section, immediately below the first, shows the corresponding vectors upon 

applying M to the first section. Thus Po is replaced by M1 (shown as M1), and the vectors listed as 

9 through 16 are the result of applying M to the vectors listed as 1 through 8. 

 

The third section likewise results by applying M to the second section, replacing M1 by M2 (shown 

as M2) and producing the vectors 17 through 24 from the corresponding vectors 9 through 16. The 

next section, which applies M once more to yield M3 (shown as M3), is the final pass of the 

recursive process, as may be verified by noting that M3 is in fact the inverse M-1 of M. The table 

shows the additional step that produces the vector M4 = Po, and causes all of the resulting vectors 

to be the same as in the first section of the table, though of course this step is not necessary.   



 16 

 
  1 2 3 4 5 6 7 8 9 index    1 2 3 4 5 6 7 8 9 index 

  3 6 9 2 5 8 1 4 7 M     3 6 9 2 5 8 1 4 7 M  

  1 2 3 4 5 6 7 8 9 P0     7 4 1 8 5 2 9 6 3 M3  

1  1 1 1 1 1 0 0 0 0    25  0 1 1 0 1 1 0 0 1   

2  0 0 0 0 0 1 1 1 1    26  1 0 0 1 0 0 1 1 0   

3  1 1 1 0 0 1 1 0 0    27  1 0 1 0 0 1 0 1 1   

4  0 0 0 1 1 0 0 1 1    28  0 1 0 1 1 0 1 0 0   

5  1 1 0 1 0 1 0 1 0    29  0 1 1 1 0 1 0 1 0   

6  0 0 1 0 1 0 1 0 1    30  1 0 0 0 1 0 1 0 1   

7  1 0 0 1 0 1 0 1 0    31  0 1 1 1 0 0 0 1 0   

8  0 1 1 0 1 0 1 0 1    32  1 0 0 0 1 1 1 0 1   

                           

  1 2 3 4 5 6 7 8 9 index    1 2 3 4 5 6 7 8 9 index 

  3 6 9 2 5 8 1 4 7 M     3 6 9 2 5 8 1 4 7 M  

  3 6 9 2 5 8 1 4 7 M1     1 2 3 4 5 6 7 8 9 M4  

9  1 0 0 1 1 0 1 1 0    1  1 1 1 1 1 0 0 0 0   

10  0 1 1 0 0 1 0 0 1    2  0 0 0 0 0 1 1 1 1   

11  1 1 0 1 0 0 1 0 1    3  1 1 1 0 0 1 1 0 0   

12  0 0 1 0 1 1 0 1 0    4  0 0 0 1 1 0 0 1 1   

13  0 1 0 1 0 1 1 1 0    5  1 1 0 1 0 1 0 1 0   

14  1 0 1 0 1 0 0 0 1    6  0 0 1 0 1 0 1 0 1   

15  0 1 0 0 0 1 1 1 0    7  1 0 0 1 0 1 0 1 0   

16  1 0 1 1 1 0 0 0 1    8  0 1 1 0 1 0 1 0 1   

                           

  1 2 3 4 5 6 7 8 9 index               

  3 6 9 2 5 8 1 4 7 M                

  9 8 7 6 5 4 3 2 1 M2                

17  0 0 0 0 1 1 1 1 1                 

18  1 1 1 1 0 0 0 0 0                 

19  0 0 1 1 0 0 1 1 1                 

20  1 1 0 0 1 1 0 0 0                 

21  0 1 0 1 0 1 0 1 1                 

22  1 0 1 0 1 0 1 0 0                 

23  0 1 0 1 0 1 0 0 1                 

24  1 0 1 0 1 0 1 1 0                 

 
Table 1: Simultaneous Mapping of All 8 Vectors Produced by the Max/Min Algorithm for n = 9. 

 

The next section examines additional ways to generate diverse vectors, which can also be 

processed by the recursive mapping process to produce larger numbers of vectors. 
 

 

5. Diversified Vectors from Balanced Sub-Vectors 

 

An auxiliary type of diversification approach results from a construction that is approximately the 

inverse of the one underlying the Max/Min Generation method. Instead of doing a “successive 

binary partitioning” of the index set for a seed vector, as a basis for identifying variables to 



 17 

complement, we start from the other end and employ a constructive process to achieve an objective 

similar to that pursued by the Max/Min Generation method.   

 

5.1 Sub-Vector Coverage 

 

Let y = (y1, …, yp) denote a p-dimensional sub-vector that we seek to incorporate within a vector x' 

by repeating y multiple times within x'. We will produce a collection Y of these p-dimensional 

sub-vectors, and use each y  Y to build a different vector x'. Evidently we want the vectors y in Y 

to differ from each other, since this will assure the resulting vectors x' will likewise differ, and if p 

is not large, then the differences between the vectors y in Y will be magnified in the vectors x' 

since the latter will differ over a larger number (and proportion) of their components. To facilitate 

the analysis, we again suppose the seed vector x is the 0 vector and understand that the assignment 

xj' = 0 corresponds to setting xj' = xj and the assignment xj' = 1 corresponds to setting xj' = 1 – xj.   

 

For the purpose of keeping p relatively small, we start by considering values of p in the range from 

3 to 7. For a given value of p, we obtain a “maximum coverage” of the sub-space associated with 

the vectors y = (y1, …, yp)  in Y if these vectors constitute all 2p binary sub-vectors of dimension p 

(hence yielding |Y| = 2p with a cardinality ranging from 8 to 128 for the indicated small p values). 

This maximum sub-space coverage derives from the obvious fact that no other collection of p-

dimensional sub-vectors succeeds to matching every 0-1 vector possibility in the sub-space. 

However, the vectors y in Y by themselves are not particularly attractive as components to be 

incorporated in the vectors x', because Y does not come close to satisfying the balanced diversity 

criterion which would require each of its members y  Y to have approximately half of its entries 

1 and half 0. In fact, by satisfying the maximum sub-vector coverage property, Y conflicts with the 

balanced diversity criterion to the greatest extent possible. 

 

To remedy this shortcoming, we treat each vector y in Y as the first half of a larger vector 

containing 2p components. Denoting a specific vector y  Y by y', we choose the second half of 

the 2p component vector to consist of the complement y" of y' (which is also in Y). Then the 

“double length” vector y2 = (y', y") possesses the desired property of containing half 0’s and half 

1’s and yet the collection of such y2 vectors satisfies a relaxed form of the maximum sub-vector 

coverage property in that both of the halves y' and y" of y2 satisfy this property in relation to p-

dimensional vectors as y' (and hence y") ranges over the 2p vectors in Y to produce y2. 

 

We replicate this new y2 vector as many times as possible to generate a n-vector x' = (y2, y2, y2, …, 

y2), understanding that the final y2 is truncated as necessary to permit x' to have n components. 

Then x' will also meet the balanced diversity criterion of containing roughly half 0’s and half 1’s 

(as will its complement x").  

 

Performing this same doubling operation with each of the 2p vectors y' in Y, we create 2p 

corresponding vectors y2 = (y', y"), and thus produce in turn 2p vectors of the form x' = (y2, y2, y2, 

…, y2).  

 

The ability to choose p relatively small results from the fact that the 2p vectors x' (and the 

associated 2p vectors x") will constitute a sufficiently large number to provide as many of these 



 18 

vectors as desired while p retains a modest value. We can also choose different values of p, and 

generate different composite vectors y2 = (y', y") to build up different x' vectors.  

 

Illustration 

 

This construction is illustrated for p = 3 by listing the 2p = 8 vectors y'  Y on the left below, and 

matching each with its complement y" on the right. 

 

   h         y'            y" 

 ----    -------    -------- 

   1     1  1  1    0  0  0 

   2     1  1  0    0  0  1 

   3     1  0  1    0  1  0 

   4     1  0  0    0  1  1  

   5     0  1  1    1  0  0 

   6     0  1  0    1  0  1 

   7     0  0  1    1  1  0 

   8     0  0  0    1  1  1    

 

For purposes of generating these y' and y" vectors, note that the vectors y' in the left column above 

correspond to listing the binary numbers from 0 to 7 in a bottom-to-top sequence and the vectors 

y" in the right column correspond to listing these same numbers in a top-to-bottom sequence. 

Accordingly, a convenient way to generate such vectors is to refer to the binary numbers that 

correspond to the vectors y' and then, upon listing them in reverse order, to create the vectors y" 

that correspond to the binary numbers in this reverse ordering.  

 

Finally, upon coupling these y' and y" vectors to yield the 8 vectors of the form y2 = (y', y"), we 

obtain the following 8 vectors x' = (y2, y2,  …, y2), where we insert the symbol “|” to depict the 

separation between successive y2 vectors. 

 

(1, 1, 1, 0, 0, 0, | 1, 1, 1, 0, 0, 0, | 1, 1, 1, 0, 0, 0, | …) 

(1, 1, 0, 0, 0, 1, | 1, 1, 0, 0, 0, 1, | 1, 1, 0, 0, 0, 1, |…) 

(1, 0, 1, 0, 1, 0, | 1, 0, 1, 0, 1, 0, | 1, 0, 1, 0, 1, 0, |…) 

                          .  .  .  .  .  .                  

 

(0, 0, 0, 1, 1, 1, | 0, 0, 0, 1, 1, 1, | 0, 0, 0, 1, 1, 1, |…) 

 

Such a collection may either be used by itself or added to those generated by the other algorithms 

of this paper to provide additional vectors (noting that some of the vectors of the current collection 

can also duplicate some of those generated by the other algorithms).  

 

Generating Vectors with Different Balances Between 1’s and 0’s 

 

As in the case of the Max/Min collection, we can generate vectors consisting of a different ratio of 

1’s and 0’s. In addition to modifying vectors already generated by assigning some of their 



 19 

components the opposite of the value previously assigned, we can also produce a different form of 

variation in the numbers of 1’s and 0’s in the following manner.  

 

Each vector pair y', y" is extended to become a triple y', y", yo, where yo is defined by setting yj
o = 

yj' for j ≤ p/2 and yj
o = yj" for j > p/2. (Equivalently, yo complements the “second half” of the y' 

vector, leaving the first half unchanged.)  Hence yo results by complementing roughly half the 

components of each of y' and y", and thus is “maximally different” from these two vectors. (This 

effect is best achieved when p is chosen to be an even number.) We make use of this string of 3p 

elements by assembling each of its 2p instances end to end to produce 2p different x' vectors.  

 

The number of 1’s and 0’s will vary by adding from 0 to p additional 1’s to each vector. (Most 

vectors will add p/2 new 1’s, then the next largest number of vectors will add p/2 +1 or p/2 – 1 

new 1’s, etc.. For example, when p = 4, producing 2p = 16 different vectors, the number of vectors 

that add k 1’s will be 1 for k = 0, 4 for k = 1, 6 for k = 2, 4 for k = 3 and 1 for k = 4.)  

 

 

6. Conclusions 

 

Strategies that generate meaningful collections of diverse vectors are highly desirable in 

metaheuristic optimization. As a foundation for creating such collections, we have shown how 

various forms of a Max/Min principle lead to diversification methods that can be usefully refined 

and generalized by augmentation and shifting procedures, and by special types of permutation 

mappings. Working backward, we also show how to achieve useful forms of diversification by a 

simple constructive approach to generate balanced sub-vectors. 

 

Our methods motivate future research to apply them in the presence of constraints that are imposed 

to achieve intensification as well as diversification goals, as by bounding admissible objective 

function values or by setting limits on admissible distances from previous high quality solutions, 

and using supporting methods such as strategic oscillation that alternately drive the search to 

violate such limits and then to enforce them again by manipulating neighborhoods and search 

directions. 

 

An instance of this type of extension consists of methods for generating diverse vectors that yield a 

selected number of elements in particular subsets equal to 1, using the Max/Min approach as an 

internal routine. Such methods can be useful in metaheuristic intensification strategies where it can 

be valuable to look for new solutions in which specified subsets of variables have approximately 

the same number of elements equal to 1 as in the best solutions. Joining such an approach with 

clustering strategies, and identifying different subsets of variables that may be relevant in different 

clusters, provides an area for further refinement.   



 20 

 

References 

 

V. Campos,  F. Glover, M. Laguna and R. Martí (2001) "An Experimental Evaluation of a Scatter 

Search for the Linear Ordering Problem," Journal of Global Optimization, vol. 21, pp. 397-

414. 

 

V. Campos, M. Laguna and R. Martí (2005) “Context-Independent Scatter and Tabu Search for 

Permutation Problems,” INFORMS Journal on Computing, vol. 17, no. 1, pp. 111-122. 

 

A. Duarte and R. Martí (2007) “Tabu Search for the Maximum Diversity Problem,” European 

Journal of Operational Research, vol. 178, pp. 71-84  

 

M. Gallego, A. Duarte, M. Laguna and R. Martí (2008) “Heuristics Algorithm for the Maximum 

Diverstity Problem,” Computational Optimization and Application, In Press  

 

F. Glover (1977) “Heuristics for Integer Programming Using Surrogate Constraints,” Decision 

Sciences 8 pp. 156-166. 

 

F. Glover (1994). “Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic 

Algorithms),” Discrete Applied Mathematics 49, pp. 231-255. 

 

F. Glover (1997) “A Template for Scatter Search and Path Relinking,” In: Hao, J.-K., Lutton, E., 

Ronald, E., Schoenauer, M., Snyers, D. (Eds.), Artificial Evolution, Lecture Notes in 

Computer Science 1363, Springer, pp. 13-54. 

 
F. Glover (1999) “Scatter Search and Path Relinking,” New Ideas in Optimization, D. Corne, M.  
 Dorigo and F. Glover, Eds., McGraw Hill,  pp. 297-316. 
 
F. Glover (2000)  “Multi-Start and Strategic Oscillation Methods – Principles to Exploit Adaptive  
 Memory,” Computing Tools for Modeling, Optimization and Simulation: Interfaces in  
 Computer Science and Operations Research, M. Laguna and J.L. Gonzales Velarde, eds.,  
 Kluwer Academic Publishers, pp. 1-24. 
 

F; Glover (2005) "Adaptive Memory Projection Methods for Integer Programming,” in  

 Metaheuristic Optimization Via Memory and Evolution, eds. C. Rego and B. Alidaee,  

 Kluwer Academic Publishers, pp. 425-440. 

 

F. Glover and J.-K. Hao (2017) “Diversification-Based Learning in Computing and Optimization,” 

Research Report, College of Engineering and Applied Science, University of 

Colorado, Boulder. 

 

F. Gortazar, A. Duarte, M. Laguna and R. Martí (2010) “Black Box Scatter Search for General 

Classes of Binary Optimization Problems,” Computers and OR, In Press. 

 

M. Laguna and R. Martí (2003) Scatter Search: Methodology and Implementations in C 

Kluwer Academic Publishers: Boston, ISBN: 1-4020-7376-3. 



 21 

 

E. Mayoraz and M. Moreira (1999) “Combinatorial Approach for Data Binarization,” chapter in 

Principles of Data Mining and Knowledge Discovery, Volume 1704 of the series Lecture 

Notes in Computer Science, pp 442-447. 

 

 

 

Appendix 1: The Progressive Gap (PG) Method  

 

We slightly modify the original description of the Progressive Gap method to clarify its main 

components and to give a foundation for the Extended PG method described below.  

 

Notation for the PG Method 

 

g = a gap value 

s = a starting index 

k = an increment index 

 

Method Overview 

 

Starting with the seed vector x, successive vectors x' are generated by complementing specific 

components xj of x. A gap value g is used that iteratively varies over the range g = 1 to gMax, 

where gMax =  n.5 + .5.1  Then, for each gap g, a starting index s iterates from s = 1 to sLim, 

where sLim = g except in the special case where g = 2 where sLim is restricted to 1 (to avoid a 

duplication among the vectors x' generated).  

 

From the initial assignment x' = x, the method sets xj' = 1 – xj for the index j = s + kg, as the 

increment index k ranges from 0 to kMax = (n – s)/g.   Thus, xj' receives this complemented 

value of xj for j = s, s + g, s + 3g, …, thereby causes each j to be separated from the previous j by 

the gap of g. (The actual gap between two successive values of j is thus g – 1. For example, when g 

= 1, the values j and j + g = j + 1 are adjacent, and in this sense have a “0 gap” between them.) The 

indicated formula for the maximum value of k sets kMax as large as possible, subject to assuring j 

does not exceed n (when j attains its largest value j = s + kMax∙g). Each time a vector x' is 

generated, the corresponding vector x" = Comp(x') is also generated. This simple pattern is 

repeated until no more gaps g or starting values s remaining to be considered. 

 

PG Algorithm 

 

rLast = 0 

gMax = n.5 + .5  

% Iterate over gap values g. 

For g = 1 to gMax 

 % Choose the max starting index sLim to be the same as the gap g unless g = 2. 

                                                 
1 A different limiting value for g is proposed in Glover (1997), consisting of gMax =  n/5. The rationale for this 

upper limit in both cases is based on the fact that as g grows, the difference between x and x' becomes smaller, and 

hence a bound is sought that will prevent x' from becoming too similar to x. 



 22 

 If g = 2 then 

  sLim = 1 

 else 

  sLim = g 

 Endif 

 % Iterate over starting values s 

 For s = 1 to sLim 

% Identify the largest value kMax for the increment index k so that the index j of xj   

     given by j = s + kg will not exceed n. 

  kMax = (n – s)/g  

  % Increment the index rLast for identifying the vectors currently generated  

     as x(r) for r = 0 to rLast. 

  rLast = rLast + 1 

  %  Begin generating the new vector x(rLast) = x'. 

  x' = x  

  % Start j at the starting index s. 

  j = s 

  For k = 0 to kMax 

   % For each value k, implicitly j = s + kg  

   xj' = 1 – xj 

   % Insert a gap of g between the current j and the next j 

j = j + g 

  Endfor (k) 

% the new vector x(rLast) = x' is now completed. Increment rLast and generate  

    the complement x" of x' to implicitly identify x(rLast) = x" for the next  

    value of rLast. 

  rLast = rLast + 1 

  x" = Comp(x') 

  If rLast  rLim then Stop  

 Endfor (s) 

Endfor (g) 

 

Remark: The method can avoid generating x" = Comp(x') when x' is the first vector generated (i.e., 

x' = x(1)), since in this case Comp(x') = x, thus yielding the seed vector (x(0)).  

 

To illustrate for the case where the seed vector is x = (0, 0, …, 0), the procedure generates the 

following vectors x' for the sampling of values shown for the starting index s and the gap g. Note 

that the vector x' for s = 2, g = 2 (marked with a “*” below) duplicates the complement of the x' 

vector for s = 1, g = 2. This is the reason the algorithm restricts the value sLim to 1 when g = 2, 

thus causing the vector for s = 2, g = 2 to be skipped. 

 

s = 1, g = 2:   (1  0  1  0  1  0  1  0  1  0 …) 

s = 1, g = 3:   (1  0  0  1  0  0  1  0  0  1 …) 

s = 2, g = 2:   (0  1  0  1  0  1  0  1  0  0 …)  * 

s = 2, g = 3:   (0  1  0  0  1  0  0  1  0  0 …) 

s = 3, g = 2:   (0  0  1  0  1  0  1  0  1  0 …) 



 23 

s = 3, g = 3:   (0  0  1  0  0  1  0  0  1  0 …) 

 

Extended Version 

 

The Extended PG Method can be used to generate a larger number of points, and also provides an 

additional form of variation in the vectors generated.  

 

The extended version of the Progressive Gap Method is for situations where the basic version of 

the method provides fewer points than desired.  

 

Brief Overview. 

 

The extended method “fills in spaces” between successive j values that determine the assignment 

xj' = 1 – xj. The method makes this assignment for a string of j values from j = j1 to j2, where j2 is 

chosen to leave an unassigned position between j2 and the next value of j1 given by j1 = jj + g. 

Consequently, j2 = j1 + g – 2 (and the method chooses j2 = j1 until g > 2.) 

 

The resulting algorithm avoids referring to a starting index s to identify the location of the “first j 

value” at which xj' = 1 – xj.  Instead, the starting value is always j = 1. This results from the fact 

that the complements x" produced for the x' vectors automatically include all of the vectors x' that 

would be derived by using different starting indexes s.  

 

The extended algorithm is stated as follows.     

 

Extended PGAlgorithm 

 

rLast = 0 

gMax = n.5 + .5   

% Iterate over gap values g. 

For g = 1 to gMax 

 kMax = (n – 1)/g   

 rLast = rLast + 1 

 %  Begin generating the new vector x(rLast) = x'. 

 x' = x  

 % Start j1 at the value 1. 

 j1 = 1 

 % identify the max value Δgmax that is added to j1 to produce j2 

 If g = 1 then 

  Δgmax = 0 

 Else 

  Δgmax = g – 2  

 Endif 

 For Δg = 0 to Δgmax 

  For k = 0 to kMax 

   % For each value k, implicitly jj = 1 + kg 

   j2 = j1 + Δg  



 24 

   For j = j1 to j2 

    xj' = 1 – xj 

   Endfor (j) 

   % Insert a gap of g between the current j1 and the next j1 

j1 = j1 + g 

  Endfor (k) 

% the new vector x(rLast) = x' is now completed. Increment rLast and generate  

     the complement x" of x' (implicitly identifying x(rLast) = x" for the next  

     value of rLast. 

  rLast = rLast + 1 

  x" = Comp(x') 

  If rLast  rLim then Stop  

 Endfor (Δg) 

Endfor (g) 

 

The PG Algorithm can be extended in additional ways, but we restrict attention to the preceding 

approach as the primary variation. Combining either the PG Algorithm its extension with 

Algorithm 3 will succeed in producing an additional collection of diversified vectors if still more 

such vectors are sought.  

 

 

Appendix 2: A “Balanced” Variant of the Max/Min Algorithm 

 

The idea underlying the Balanced Variant of Algorithm 2 is to assure that sets N(i) with an odd 

number of elements SetSize are split so that SetSize/2 of their elements go into NL(i) when an 

odd number of such sets have been encountered and SetSize/2 of their elements go into NL(i) 

when an even number of such sets have been encountered. The rule is applied anew at each 

iteration (each successive value of Iter), when creating a new partition from the current sets N(i) 

for i = 1 to iLast.  

 

The “balanced” terminology comes from the fact that this approach will tend to balance the 

number of variables xj that are complemented and not complemented to produce the vector x' 

generated on the current iteration. When this approach is not used, the order in which the current 

N(i) sets occur could cause each set with |N(i)| odd to be split in the same way, putting SetSize/2 

(or SetSize/2) elements in NL(i), thus causing the number of complemented xj to exceed the 

number of xj not complemented (or vice versa).  

 

When the Balanced Variant is used, the final assignment to be made (following the determination 

that MaxNum = 2) has a simple form that allows x' and x" to be created by the following shortcut 

step.  

 

  xj' = 1 – xj  if j is odd        (1') 

xj' = xj if j is even        (2') 

and 

  xj" =  xj if j is odd        (3') 

xj" = 1 – xj if j is even       (4') 



 25 

 

Consequently, when MaxNum = 2, the method immediately makes this simplified final assignment 

and then stops.  

 

The detailed form of this approach is as follows. A logical variable named OddSet keeps track of 

whether an even odd number of sets with |N(i)| odd have been encountered. 

 

Balanced Variant of the Max/Min Generation Method 

iLast = 1 

First(1) = 1 

Last(1) = n 

Location(1) = 1 

% Generate the first two vectors x' and x" corresponding to x(0) and x(1). 

x' = x 

x" = Comp(x') 

rLast = 1 

MaxIter = 100 

For Iter = 1 to MaxIter   

% Each iteration creates a new partition of N and associated vectors x' and x". 

% Update the vector index rLast for recording x(rLast) = x' and x(rLast+1) = x". 

rLast = rLast + 1 

% Initialize the logical variable OddSet to keep track of whether an even or odd number of   

     sets N(i) have been encountered with SetSize = |N(i)| odd. 

OddSet = True 

For i = 1 to iLast 

 % Split each set N(i) of the current partition for i = 1 to iLast.  

  Loc = Location(i) 

  SetSize = Last(Loc) + 1 – First(Loc) 

  If SetSize is odd then 

If OddSet = True then 

 Split = SetSize/2   

 OddSet = False 

   Else 

    Split = SetSize/2 

    OddSet = True 

   Endif 

  Else 

   Split = SetSize/2 

  Endif 

  SplitPoint = First(Loc) + Split – 1  

  FirstL= First(Loc) 

  LastL= SplitPoint 

  FirstR = SplitPoint + 1  

  LastR = Last(Loc) 

% The next two loops carry out the assignments (1) – (4).  

% (If FirstL > LastL or FirstR > LastR, the corresponding 



 26 

     loop should be skipped.) 

  For j = FirstL to LastL 

   xj' = 1 – xj 

   xj" = xj 

  Endfor (j) 

  For j = FirstR to LastR 

   xj' = xj 

   xj" = 1 - xj 

  Endfor (j) 

  % First(Loc) = FirstL already is true 

  Last(Loc) = LastL 

  First(Loc + iLast) = FirstR 

  Last(Loc + iLast) = LastR 

Endfor (i) 

rLast = rLast + 1 

If rLast  rLim then Stop. 

% Identify MaxNum = |N(1)|  (Location(1) = 1 is invariant). 

MaxNum = Last(1) + 1 – First(1) 

If MaxNum = 1 then 

% All vectors x' and x" have been generated. No need to update the final partition. 

 Stop 

Endif 

% Update the partitions by updating the Location(i) array, to assure that  

% Loc = Location(i) identifies where N(i) is stored for i = 1 to iLast. 

For i = iLast to 1 (-1)   % i = iLast, iLast – 1, …, 1   

 Loc = Location(i) 

 Location(2i – 1) = Loc 

 Location(2i) = Loc + iLast 

Endfor (i) 

iLast = 2iLast 

If MaxNum = 2 then 

% Identify the number Num2 of sets having |N(i)| = 2. Don’t need to use  

     Loc = Location(i) since the order of the sets doesn’t matter. 

  Num2 = 0 

  For i = 1 to iLast 

   If Last(i) > First(i) then 

    Num2 = Num2 + 1 

  Endif 

 Endfor (i) 

 If Num2 ≤ Threshold then 

% Skip generating a final assignment. All relevant x' and x"  

    vectors have been generated. 

Stop 

  Else 

   % Generate the shortcut assignment (1') to (4'). 

   For j = 1 to n 



 27 

    If j is odd then 

     xj' = 1 – xj  

     xj" = xj 

    Else 

     xj' = xj  

     xj" = 1 – xj 

    Endif 

Endfor 

Stop 

  Endif 

 Endif 

Endfor (Iter) 

 

 

Appendix 3: Strongly Balanced Vector Generation 

 

We consider a recursive process to generate diverse vectors that are not only composed of 

approximately half 0’s and half 1’s, but that additionally are strongly balanced in the sense that 

every successive pair of elements consists of a single 0 and a single 1. We start with the case for p 

= 2 and consider just the 2 vectors that contain exactly one 0 and one 1, which are complements of 

each other: 

 

y(1) = (1,0) and y(2) = (0,1). 

 

We could use these vectors by themselves to generate the two x vectors given by x(1) = (y(1), y(1), 

…) and x(2) = (y(2), y(2), …), which also are complements of each other.  

 

Now we consider all ways of pairing these two vectors, thus obtaining all vectors of the form (y(p), 

y(q)) for p, q = 1, 2 (i.e., (y(1), y(1)), (y(1), y(2)), …, etc.) From this we obtain the 4 new vectors 

 

y(1) = (1, 0, 1, 0),  y(2) = (1, 0, 0, 1),  y(3) = (0, 1, 1, 0),  y(4) = (0, 1, 0, 1) 

 

The complement of each of these vectors is also contained in the collection generated. (For 

example, y(1) and y(4) are complements, and y(2) and y(3) are complements.) Moreover, these y 

vectors satisfy the strongly balanced property where every successive two components of these 

vectors consists of one 0 and one 1. 

 

Again, we can form the vectors x(h) = (y(h), y(h), ….) for h = 1 to 4 and the complement of each 

vector is likewise in the collection. (This holds even if the last y(h) vector in each x(h) must be 

truncated so that x(h) has dimension n.) Similarly, every two successive components of each 

vector consists of one 0 and one 1, although if n is odd there will not be a final “second 

component” to pair with xn(h).  

 

To take this process one step farther, we combine the vectors y(1) through y(4) to produce all 

possible pairs (y(p), y(q)) for p, q = 1, 2, 3, 4. The 4 x 4 = 16 resulting combinations are shown 

below. 



 28 

 

   h         y(p)             y(q) 

 ----    ----------       ---------- 

   1     1  0  1  0      1  0  1  0       

   2     1  0  1  0      0  1  0  1 

   3     1  0  1  0      0  1  1  0 

   4     1  0  1  0      1  0  0  1   

   5     0  1  0  1      1  0  1  0 

   6     0  1  0  1      0  1  0  1 

   7     0  1  0  1      0  1  1  0 

   8     0  1  0  1      1  0  0  1    

   9     0  1  1  0      1  0  1  0 

  10    0  1  1  0      0  1  0  1 

  11    0  1  1  0      0  1  1  0 

  12    0  1  1  0      1  0  0  1 

  13    1  0  0  1      1  0  1  0 

  14    1  0  0  1      0  1  0  1 

  15    1  0  0  1      0  1  1  0 

  16    1  0  0  1      1  0  0  1  

 

As before, the complement of every vector is also contained in the collection, and every two 

successive elements consists of one 0 and one 1. By stringing these vectors together to produce 

vectors x(h) = (y(h), y(h), …), the resulting x(h) vectors will include vectors produced for the 

previous level when h ranged from 1 to 4. 

 

If it is desired to go farther, we may produce the pairs (y(p), y(q)) from this collection to produce 

16 x 16 = 256 new y(h) vectors, each containing 8 + 8 = 16 components. These strongly balanced 

vectors do not possess some of the key features of vectors generated by the other methods 

described in this paper, and hence produce collections that are less diversified. Nevertheless, we 

anticipate that their novel structure may prove useful in certain types of applications. 

 

 

 

 


