![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig5_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig6_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs10758-010-9164-8/MediaObjects/10758_2010_9164_Fig8_HTML.gif)
References
Baki, A. (2005). Archimedes with Cabri: Visualization and experimental verification of mathematical ideas. International Journal of Computers for Mathematical Learning, 10, 259–270.
Cabrilog. (2007). Cabri II Plus 1.4.2 (computer software). Available at http://www.cabri.com/download-cabri-2-plus.html. Grenoble, France.
De Villiers, M. D. (1999). Rethinking proof with the geometer’s sketchpad. Berkeley, California: Key Curriculum Press.
De Villiers, M. D. (2006). The nine-point conic: A rediscovery and proof by computer. International Journal of Mathematical Education in Science and Technology, 37(1), 7–14.
Key Curriculum Press. (2007). The geometer’s sketchpad® dynamic geometry® software for exploring mathematics, version 4. (computer software). Available at http://keypress.com/x5521.xml. Emeryville, CA.
King, J., & Schattschneider, D. (Eds.). (1997). Geometry turned on! Dynamic software in learning, teaching, and research. Washington: Mathematical Association of America.
Kunkel, P., Shanan, S., & Steketee, S. (2007). Exploring algebra 2 with the geometer’s sketchpad. Emeryville, CA: Key Curriculum Press.
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.
Ray, W. (2006). Triangle circle limits. Journal of Symbolic Geometry, 1, 24–39. Available at www.geometryexpressions.com/journal.
Scher, D. (1999). Problem solving and proof in the age of dynamic geometry. Micromath, 15(1), 24–30.
Scher, D., Steketee, S., Kunkel, P., & Lyublinskaya, I. (2004). Exploring precalculus with the geometer’s sketchpad. Emeryville, CA: Key Curriculum Press.
Todd, P. (2007). Geometry expressions: A constraint based interactive symbolic geometry system. Lecture Notes in Computer Science, 4869, 189–202.
Author information
Authors and Affiliations
Corresponding author
Additional information
* This column will publish short (from just a few paragraphs to ten or so pages), lively and intriguing computer-related mathematics vignettes. These vignettes or snapshots should illustrate ways in which computer environments have transformed the practice of mathematics or mathematics pedagogy. They could also include puzzles or brain-teasers involving the use of computers or computational theory. Snapshots are subject to peer review. From the Column Editor Uri Wilensky, Northwestern University. e-mail: uri@northwestern.edu.
Rights and permissions
About this article
Cite this article
Todd, P., Lyublinskaya, I. & Ryzhik, V. Symbolic Geometry Software and Proofs. Int J Comput Math Learning 15, 151–159 (2010). https://doi.org/10.1007/s10758-010-9164-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10758-010-9164-8