Skip to main content
Log in

Evolution and Identification from a Bibliometric Perspective of the Use of Robots in the Intervention of Children with ASD

  • Original research
  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

Irruption of technologies in the educational context, specifically robotics has meant changes in the use of learning tools for students with ASD. In this sense, the inclusion of robots in intervention with these students allowed to design simpler and more controlled learning environments, adjusted to the needs of these students. From this line of research, the main of this study has been to realize a systematic and thematic review providing a state-of-art review about the use of robots as a tool for social interaction with ASD students using some variables such as instrument, features of the participants, aim of the research, results, developed activities, worked areas. Therefore, a bibliometric study has been applied through the Web of Science (WOS). The advanced search with keywords on the subject, object of study, ended with 13 publications which were adjusted to previously established criteria such as age of the participants (between 2 and 16 years), purpose of articles (academic) or the years of publication (between the years 2005 and 2017). The results have showed, according to the established variables, an evolution of the scientific production, being year 2017 the most productive and observing that, in general lines, the prototypes of recent robots have more work options. The conclusions, in line with previous studies, show that robots have been used in the intervention with children with ASD being more used and effective as a tool to promote communicative interaction while there is no evidence of intervention in curricular contents, what may indicate its effectiveness in this area and transfer future studies to other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arington, VA: American Psychiatric Publishing.

    Book  Google Scholar 

  • Aresti-Bartolome, N., & Garcia-Zapirain, B. (2014). Technologies as support tools for persons with autistic spectrum disorder: A systematic review. International Journal of Environmental Research and Public Health,11, 7767–7802.

    Article  Google Scholar 

  • Arnaiz, P. (2003). Educación Inclusiva: Una escuela para todos. Archidona: Aljibe.

    Google Scholar 

  • Baharav, E., & Reiser, C. (2010). Using telepractice in parent training in early autism. Telemedicine Journal and E-Health,16(6), 727–731.

    Article  Google Scholar 

  • Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Science,6(6), 248–254.

    Article  Google Scholar 

  • Baron-Cohen, S. (2008). Autism, hypersystemizing, and truth. The Quarterly Journal of Experimental Psychology,61(1), e64–e75. https://doi.org/10.1080/17470210701508749.

    Article  Google Scholar 

  • Baron-Cohen, S. (2010). Autismo y Síndrome de Asperger. Madrid: Alianza Editorial.

    Google Scholar 

  • Bauminger, N. (2003). Peer interaction and loneliness in high-functioning children with autism. Journal of Autism and Developmental Disorders,33, 489–507. https://doi.org/10.1023/A:1025827427901.

    Article  Google Scholar 

  • Bekele, E. T., Lahiri, U., Swanson, A. R., Crittendon, J. A., Warren, Z. E., & Sarkar, N. (2013). A step towards developing adaptive robot-mediated intervention architecture (ARIA) for children with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering,21(2), 289–299.

    Article  Google Scholar 

  • Bharatharaj, J., Huang, L., Al-Jumaily, A., Rajesh, E., & Krägeloh, C. (2017). Investigating the effects of robot-assisted therapy among children with autism spectrum disorders using bio-markers. IOP Conference Series: Materials Science and Engineering,234, 1–7. https://doi.org/10.1088/1757-899X/234/1/012017.

    Article  Google Scholar 

  • Bird, G., Leighton, L., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society B-Biological Sciences,274(1628), 3027–3031.

    Article  Google Scholar 

  • Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. A., Jones, J. R., & Lu, M. C. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. National Center for Health Statistics,65, 1–11.

    Google Scholar 

  • Boccanfuso, L., Sacarborough, S., Abramson, R. K., Hall, A. V., Wright, H. H., & O’Kane, J. M. (2017). A low-cost socially assistive robot and robot-assisted intervention for children with autism spectrum disorder: Field trials and lessons learned. Autonomous Robots,41(3), 637–655. https://doi.org/10.1007/s10514-016-9554-4.

    Article  Google Scholar 

  • Boucenna, S., Narzisi, A., Tilmont, E., Muratori, F., Pioggia, G., Cohen, D., et al. (2014). Interactive technologies for autistic children: A review. Cognitive Computation,6(4), 722–740.

    Article  Google Scholar 

  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology,3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa.

    Article  Google Scholar 

  • Cabibihan, J.-J., Javed, H., Ang, M., & Aljunied, S. M. (2013). Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. International Journal of Social Robots,5(4), 593–618.

    Article  Google Scholar 

  • Celani, G., Battacchi, M. W., & Arcidiacono, L. (1999). The understanding of the emotional meaning of facial expressions in people with Autism. Journal of Autism and Developmental Disorders,29(1), 57–66.

    Article  Google Scholar 

  • Charman, T., Swettenham, J., Baron-Cohen, S., Cox, A., Baird, G., & Drew, A. (1997). Infants with autism: an investigation of empathy, pretend play, joint attention and imitation. Developmental Psychology,33(5), 781–789.

    Article  Google Scholar 

  • Costescu, C. A., Vanderborght, B., & David, D. O. (2015). Reversal learning task in children with autism spectrum disorder: A robot-based approach. Journal of Autism and Developmental Disorders,45, 3715–3725. https://doi.org/10.1007/s10803-014-2319-z.

    Article  Google Scholar 

  • Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmatics & Cognition, 12(1), 1–35.

    Article  Google Scholar 

  • Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders,6(1), 249–262.

    Article  Google Scholar 

  • Duquette, A., Michaud, F., & Mercier, H. (2008). Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Autonomous Robots,24, 147–157. https://doi.org/10.1007/s10514-007-9056-5.

    Article  Google Scholar 

  • Eaves, L. C., & Ho, H. H. (2008). Young adult outcome of autism spectrum disorders. Journal of Autism and Developmental Disorders,38, 739–747.

    Article  Google Scholar 

  • Elo, S., & Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing,62(1), 107–115.

    Article  Google Scholar 

  • Feil-Seifer, D., & Mataric, M. J. (2005). Defining socially assistive robotics. In Proceedings of the 2005 IEEE 9th international conference on rehabilitation robotics, Chicago (pp. 465–468).

  • Feil-Seifer, D., & Mataric, M. J. (2008). Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. In O. Khatib, V. Kumar, & G. J. Pappas (Eds.), Experimental robotics (pp. 201–210)., Springer Tracts in Advanced Robotics Berlin, Heidelberg: Springer.

    Google Scholar 

  • Feil-Seifer, D., & Mataric, M. J. (2009). Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. Experimental Robotics,54, 201–210.

    Article  Google Scholar 

  • Fisher, N., & Happe, F. (2005). A training study of theory of mind and executive functioning children with autistic spectrum disorders. Journal of Autism and Developmental Disorders,3(1), e757–e770. https://doi.org/10.1007/s10803-005-0022-9.

    Article  Google Scholar 

  • Francois, D., Powell, S., & Dautenhahn, K. (2009). A long-term study of children with autism playing with a robotic pet: Taking inspirations from non-directive play therapy to encourage childrens proactivity and initiative-taking. Interaction Studies,10(3), 324–373.

    Google Scholar 

  • Ganz, J. B., Hong, E. R., & Goodwyn, F. D. (2013). Effectiveness of the PECS phase III APP and choice between the APP and traditional PECS among preschoolers with ASD. Research in Autism Spectrum Disorders,7, 973–983.

    Article  Google Scholar 

  • Giullian, N., Ricks, D., Atherton, A., Colton, M., Goodrich, M., & Brinton, B. (2010). Detailed requirements for robots in autism therapy. In IEEE international conference on systems man and cybernetics (pp. 2595–2602). Istanbul, Turkey: IEEE. http://dx.doi.org/10.1088/1757-899X/234/1/012017.

  • Goldsmith, T. R., & LeBlanc, L. A. (2004). Use of technology in interventions for children with autism. Journal of Early and Intensive Behavior Intervention,1(2), 166–178.

    Article  Google Scholar 

  • Goodrich, M. A., Colton, M., Brinton, B., Fujiki, M., Alan Atherton, J., Robinson, L., et al. (2012). Incorporating a robot into an autism therapy team. IEEE Intelligent Systems,27(2), 52. https://doi.org/10.1109/MIS.2012.40.

    Article  Google Scholar 

  • Grynszpan, O., Weiss, P. L., Perez-Diaz, F., & Gal, E. (2014). Innovative technology-based interventions for autism spectrum disorders: A meta-analysis. Autism,18(4), 346–361.

    Article  Google Scholar 

  • Hendriksen, J., & Hurts, P., III. (2009). Wechsler preschool and primary scale of intelligence. Nederlandse bewerking. Amsterdam: Pearson.

    Google Scholar 

  • Howling, P., Goode, S., Hutton, J., et al. (2004). Adult outcome for children with autism. Journal of Child Psychology and Psychiatry,45, 212–229.

    Article  Google Scholar 

  • Hsieh, H., & Shannon, S. (2005). Three approaches to qualitative content analysis. Qualitative Health Research,15(9), 1277–1288.

    Article  Google Scholar 

  • Huijnen, C. A. G. J., Lexis, M. A. S., Jansens, R., & Witte, L. P. (2016). Mapping robots to therapy and educational objectives for children with autism spectrum disorder. Journal of Autism and Developmental Disorders,46(6), 2100–2114.

    Article  Google Scholar 

  • Huskens, B., Verschuur, R., Gillesen, J., Didden, R., & Barakova, E. (2013). Promoting question-asking in school-aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human–trainer intervention. Developmental Neurorehabilitation,16(5), 345–356.

    Article  Google Scholar 

  • Ingersoll, B., & Wainer, A. (2013). Initial efficacy of project ImPACT: A parent-mediated social communication intervention for young children with ASD. Journal of Autism and Developmental Disorders,43(12), 2943–2952.

    Article  Google Scholar 

  • Ito, H., et al. (2012). Validation of an interview-based rating scale developed in Japan for pervasive developmental disorders. Research in Autism Spectrum Disorders,6(4), 1265–1272.

    Article  Google Scholar 

  • Izukawa, Y., Matsushita, Y., & Nakase, A. (2002). Kyoto scale for psychological development 2001. Kyoto: Kioto International Social Welfare Exchange Centre.

    Google Scholar 

  • Kaboski, J. R., Dielh, J. J., Beriont, J., Crowell, C. R., Villano, M., Wier, K., et al. (2015). Brief report: A pilot summer robotics camp to reduce social anxiety and improve social/vocational skills in adolescents with ASD. Journal of Autism and Developmental Disorders,45(12), 3862–3869.

    Article  Google Scholar 

  • Katherine, A. (2013). Using technology to support individuals with ASD: A review of the literature. Honors projects. 203.

  • Ke, F., & Im, T. (2013). Virtual-reality-based social interaction training for children with high-functioning autism. Journal of Education Research,106(6), 441–461.

    Article  Google Scholar 

  • Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., et al. (2013). Social robots as embedded reinforces of social behavior in children with autism. Journal of Autism and Developmental Disorders,43, 1038–1049. https://doi.org/10.1007/s10803-012-1645-2.

    Article  Google Scholar 

  • Kozima, H., Michalowski, M. P., & Nakagawa, C. (2009). A playful robot for research therapy and entertainment. International Journal of Social Robotics,1(1), 3–18.

    Article  Google Scholar 

  • Kumazaki, H., et al. (2018). The impact of robotic intervention on joint attention in children with autism spectrum disorders. Molecular Autism,9, 46. https://doi.org/10.1186/s13229-018-0230-8.

    Article  Google Scholar 

  • Lee, H., & Hyun, E. (2015). The intelligent robot contents for children with speech-language disorder. Educational Technology and Society,18(3), 100–113.

    Google Scholar 

  • Leekam, S., Baron-Cohen, S., Perrett, D., Milders, M., & Brown, S. (1997). Eye-direction detection: A dissociation between geometric and joint attention skills in autism. British Journal of Developmental Psychology,15(1), 77–95.

    Article  Google Scholar 

  • Lindsay, S., Proulx, M., Scott, H., & Thomson, N. (2014). Exploring teachers’ strategies for including children with autism spectrum disorder in mainstream classrooms. International Journal of Inclusive Education,18(2), 101–122. https://doi.org/10.1080/13603116.2012.758320.

    Article  Google Scholar 

  • Liu, C. C., Conn, K., Sarkar, N., & Stone, W. (2008). Online affect detection and robot behavior adaptation for intervention of children with autism. IEEE Transactions on Robotics,24(4), 883–896.

    Article  Google Scholar 

  • Liu, X., Wu, Q., Zhao, W., & Luo, X. (2017). Technology-facilitated diagnosis and treatment of individuals with autism spectrum disorder: An engineering perspective. Applied Sciences-Basel,10(7), 1–31.

    Google Scholar 

  • Lorenzo, G., Lledó, A., Arráez-Vera, G., & Lorenzo-Lledó, A. (2018). The application of immersive virtual reality for students with ASD: A review between 1990–2017. Education and Information Technologies,24, 1–25. https://doi.org/10.1007/s10639-018-9766-7.

    Article  Google Scholar 

  • Lorenzo, G., Lledó, A., Pomares, J., & Roig, R. (2016). Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Computers & Education,98, 192–205.

    Article  Google Scholar 

  • Lorenzo, G., Pomares, J., Lledó, A., & Jara, C. (2015). Control of redundant joint structures using image information during the tracking of non-smooth trajectories. Journal of Intelligent and Robotic Systems,78(1), 33–46. https://doi.org/10.1007/s10846-014-0069-y.

    Article  Google Scholar 

  • Lotter, V. (1966). Epidemiology of autistic conditions in young children 1. Prevalence. Social Psychiatry,1(3), 124–135.

    Article  Google Scholar 

  • Lund, H. H., Pederson, M. D., & Beck, R. (2009). Modular robotic tiles: Experiments for children with autism. Artificial Life and Robotics,13(1), 393–400.

    Google Scholar 

  • Matsuda, S., Nunez, E., Hirokawa, M., Yamamoto, J., & Suzuki, K. (2017). Facilitating social play for children with PDDs: Effects of paired robotic devices. Frontiers in Psychology,8, 1029. https://doi.org/10.3389/fpsyg.2017.01029.

    Article  Google Scholar 

  • Mesibov, G. B. (1984). Social skills training with verbal autistic adolescents and adults: A program model. Journal of Autism and Developmental Disorders,14, 395–404. https://doi.org/10.1007/BF02409830.

    Article  Google Scholar 

  • Mesibov, G., & Shea, V. (2010). The TEACCH program in the era of evidence-based practice. Journal of Autism and Developmental Disorders,40(5), 570–579. https://doi.org/10.1007/s10803-009-0901-6.

    Article  Google Scholar 

  • Michaud, F., Salter, T., Duquette, A., & Laplante, J. F. (2007). Perspectives on mobile robots used as tools for pediatric rehabilitation. Assistive Technology,19, 14–29.

    Article  Google Scholar 

  • Miles, M., & Huberman, A. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Morgan, J. A., Thornton, B. A., Peacock, J. C., Hollingsworth, K. W., Smith, C. R., Oz, M. C., et al. (2005). Does robotic technology make minimally invasive cardiac surgery too expensive? A hospital cost analysis of robotic and conventional techniques. Journal of Cardiac Surgery,20(3), 246–251.

    Article  Google Scholar 

  • Murdock, L. C., Ganz, J., & Crittendon, J. (2013). Use of an iPad play story to increase play dialogue of preschoolers with autism spectrum disorders. Journal of Autism and Developmental Disorders,43, 2174–2189.

    Article  Google Scholar 

  • Nader-Grosbois, N., & Day, J. (2011). Emotional cognition: Theory of mind and face recognition. In J. L. Matson & P. Sturney (Eds.), International handbook of autism and pervasive developmental disorders (pp. e274–e281). New York: Springer.

    Google Scholar 

  • Ogura, T. (2007). Early lexical development in Japanese children. Gengo Kenkyu,132, 29–53.

    Google Scholar 

  • Olds, J., Rubin, P., MacGregor, D., Madou, M., McLaughlin, A., Oliva, A., et al. (2013). Implications: Human cognition and communication and the emergence of the cognitive society. In M. C. Roco, W. S. Bainbridge, B. Tonn, & G. Whitesides (Eds.), Convergence of knowledge, technology and society SE-6 (pp. 223–253). Berlin: Springer.

    Chapter  Google Scholar 

  • Parsons, S., Leonard, A., & Mitchell, P. (2006). Virtual environments for social skills training: Comments from two adolescents with autistic spectrum disorder. Computers & Education,47(2), 186–206.

    Article  Google Scholar 

  • Pellicano, E. (2010). Individual differences in executive function and central coherence predict developmental changes in theory of mind in autism. Developmental Psychology,46(2), e530–e544. https://doi.org/10.1037/a0018287.

    Article  Google Scholar 

  • Pierno, A. C., Mari, M., Lusher, D., & Castiello, U. (2008). Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia,46(1), 448–454.

    Article  Google Scholar 

  • Pioggia, G., Igliozzi, R., Ferro, M., Ahluwalia, A., Muratori, F., & De Rossi, D. (2005). An android for enhancing social skills and emotion recognition in people with autism. IEEE Transactions on Neural Systems and Rehabilitation Engineering,13(4), 507–515. https://doi.org/10.1109//TNSRE.2005.856076.

    Article  Google Scholar 

  • Powel, S. (1996) The use of computer in teaching people with autism. In P. Shattock & P. Linfoot (Eds.), Autism on the agenda. Proceedings of the NAS conference (pp. 128–132). London.

  • Robins, B., & Dautenhahn, K. (2006). The role of the experimenter in hri research- a case study evaluation of children with autism interacting with a robotic toy. In Proceedings of the 15th IEEE international symposium on robot and human interactive communication (pp. 646–651). Hatfield, UK: IEEE Press.

  • Robins,B., Dautenhahn, K., & Dickerson, P. (2009). From Isolation to Communication: A case study Evaluation of Robot assisted play for children with autism with a minimally expressive humanoid robot. In Proceedings the second international conferences on advances in computer-human interactions, ACHI 2009 (pp. 205–211). Cancun, Mexico: IEEE.

  • Robins, B., Dautenhahn, K., Te Boekhorts, R., & Billard, A. (2005). Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society,4(2), 105–120.

    Article  Google Scholar 

  • Rosa, A., Huertas, J., & Blanco, J. (1996). Methodology of the history of psychology. Madrid: Alianza Editorial.

    Google Scholar 

  • Ryan, G. W., & Bernard, H. R. (2000). Data management and analysis methods. In N. K. Denzin & Y. S. Lincoln (Eds.), Handbook of qualitative research (2nd ed., pp. 769–802). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Salter, T., Michaud, F., & Larouche, H. (2010). How wild is wild? A taxonomy to categorize the wildness of child-robot interaction. International Journal of Social Robotics,2(4), 405–415.

    Article  Google Scholar 

  • Sartorato, F., Przybylowski, L., & Sarko, D. K. (2017). Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots. Journal of Psychiatric Research,90, 1–11. https://doi.org/10.1016/j.jpsychires.2017.02.004.

    Article  Google Scholar 

  • Scassellati, B. (2007). How social robots will help us diagnose, treat, and understand autism. Robotics Research,28, 552–563.

    Article  Google Scholar 

  • Scassellati, B., Admoni, H., & Mataric, M. (2012). Robots for use in autism research. Annual Review of Biomedical Engineering,14, 275–294.

    Article  Google Scholar 

  • Schieve, L. A., Rice, C., Devine, O., Maenner, M. J., Lee, L. C., Fitzgerald, R., et al. (2011). Have secular changes in perinatal risk factors contributed to the recent autism prevalence increase? Development and application of a mathematical assessment model. Annals of Epidemiology,21(12), 930–945.

    Article  Google Scholar 

  • Schopler, E., Reichler, R., Bashford, A., Lansing, M., & Marcus, L. (1990). The psychoeducational profile revised (PEP-R). Austin, TX: Pro-Ed.

    Google Scholar 

  • Shane, H., & Albert, P. (2008). Electronic screen media for persons with autism spectrum disorders: Results of a survey. Journal of Autism and Developmental Disorders, 38(8), 1499–1508.

    Article  Google Scholar 

  • Short, E. S., Deng, E. C., Feil-Seifer, D., & Mataric, M. J. (2017). Understanding agency in interactions between children with autism and socially assistive robots. Journal of Human-Robot Interaction,6(3), 21–47.

    Article  Google Scholar 

  • Simut, R. E., Vanderfaeillie, J., Peca, A., Van de Perre, G., & Vanderborght, B. (2015). Children with autism spectrum disorders make a fruit salad with probo, the social robot: An interaction study. Journal of Autism and Developmental Disorders,46(1), 113–126. https://doi.org/10.1007/s10803-015-2556-9.

    Article  Google Scholar 

  • Soto, J., López, J. M., & Rodríguez, A. (2000). Desarrollo, calidad de educación y nuevas tecnologías. Revista galego-portuguesa de psicoloxía e educación. Revista de estudios e investigación en psicología y educación,5, 9–18.

    Google Scholar 

  • Stickland, D. C., Coles, C. D., & Southern, L. B. (2013). JobTIPS: A transition to employment program for individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders,43, 2472–2483.

    Article  Google Scholar 

  • Takeo, T., Toshitaka, N., & Daisuke, N. (2007). Development application software on PDA for autistic disorder children. IPSJ SIG technical report (Vol. 12, pp. 31–38).

  • Tapus, A., Peca, A., Aly, A., Pop, C., Jisa, L., Pintea, S., et al. (2012). Children with autism social engagement in interaction with Nao, an imitative robot—a series of single case experiments. Interaction Studies,13(3), 315–347. https://doi.org/10.1075/is.13.3.01tap.

    Article  Google Scholar 

  • Tellegen, P. J., Winkel, M., Wijberg-Williams, B. J., & Laros, J. A. (1998). Snijders-Oomen non-verbal inteligence test revised version: SON- R 2½. Veramtwooding en handleiding.

  • Tortosa, F. E. (2002). El trastorno del Espectro Autista en internet en Castellano. En F.J. Soto y J. Rodríguez. (Coords). Murcia: Consejería de Educación y Cultura.

  • Treffert, D. A. (1970). Epidemiology of infantile autism. Archives of General Psychiatry,22(5), 431–438.

    Article  Google Scholar 

  • Van Straiten, C. L., Seekers, I., Barakova, E., Glennon, J., Buitelaar, J., & Chen, A. (2018). Effects of robots’ intonation and bodily appearance on robot-mediated communicative treatment outcomes for children with autism spectrum disorder. Personal and Ubiquitous Computing,22, 379–390.

    Article  Google Scholar 

  • Vanderborght, B., Simut, R., Saldier, J., Pop, C., Rusu, A. S., Pintea, S., et al. (2012). Using the social robot Probo as a social story telling agent for children with ASD. Interaction Studies,13(3), 348–372.

    Article  Google Scholar 

  • Vismara, L. A., Young, G. S., & Rogers, S. J. (2012). Telehealth for expanding the reach of early autism training to parents. Autism Research and Treatment,2012, 1–12. https://doi.org/10.1155/2012/121878.

    Article  Google Scholar 

  • Volkmar, F. R., Paul, R., & Rogers, S. J. (2014). Handbook of autism and pervasive developmental disorders: Diagnosis, development and brain mechanisms (Vol. 1). New York: Wiley.

    Book  Google Scholar 

  • Wacker, D. P., Lee, J. F., Padilla Dalmau, Y. C., Kopelman, T. G., Lindgren, S. D., Kuhle, J., et al. (2013). Conducting functional communication training via telehealth to reduce the problem behavior of young children with autism. Journal of Developmental and Physical Disabilities,25(1), 35–48.

    Article  Google Scholar 

  • Wainer, J., Dautenhahn, K., Robins, B., & Amirabdollahian, F. (2014). A pilot study with a novel setup for collaborative play of the humanoid robot KASPAR with children with autism. International Journal of Social Robotics,6, 45–65. https://doi.org/10.1007/s12369-013-0195-x.

    Article  Google Scholar 

  • Wainer, A., Drahota, A., Cohn, E., Kerns, C., Lerner, M., Marro, B., et al. (2017). Understanding the landscape of psychosocial intervention practices for social, emotional, and behavioral challenges in youth with ASD: A study protocol. Journal of Mental Health Research in Intellectual Disabilities,10(3), 178–197. https://doi.org/10.1080/19315864.2017.1284289.

    Article  Google Scholar 

  • Wainer, J., Ferrari, E., Dautenhahn, K., & Robins, B. (2010). The effectiveness of using a robotics class to foster collaboration among groups of children with autism in an exploratory study. Personal Ubiquitous Computing,14(1), 445–455.

    Article  Google Scholar 

  • Wainer, A. L., & Ingersoll, B. R. (2011). The use of innovative computer technology for teaching social communication to individuals with autism spectrum disorders. Research in Autism Spectrum Disorders,5(1), 96–107. https://doi.org/10.1016/j.rasd.2010.08.002.

    Article  Google Scholar 

  • Welch, K. C., Lahiri, U., Warren, Z., & Sarkar, N. (2010). An approach to the design of socially acceptable robots for children with autism spectrum disorders. International Journal of Social Robotics,2(4), 391–403.

    Article  Google Scholar 

  • Willms, D., Best, J., Taylor, D., Gilbert, J., Wilson, D., Lindsay, E., et al. (1990). A systematic approach for using qualitative methods in primary prevention research. Medical Anthropology Quarterly,4(1), 391–409.

    Article  Google Scholar 

  • Wing, L., Gould, J., & Gillberg, C. (2011). Autism spectrum disorders in the DSM-V: Better or worse than the DSM-IV? Research in Developmental Disabilities,32, 768–773.

    Article  Google Scholar 

  • Wong, C., Odom, S. L., Hume, K., Cox, A. W., Fettig, A., Kucharczyk, S., et al. (2014). Evidence-based practices for children, youth, and young adults with autism spectrum disorder. Journal of Autism and Developmental Disorders,45, 1951–1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Lorenzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Vázquez, E., Lorenzo, G., Lledó, A. et al. Evolution and Identification from a Bibliometric Perspective of the Use of Robots in the Intervention of Children with ASD. Tech Know Learn 25, 83–114 (2020). https://doi.org/10.1007/s10758-019-09415-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-019-09415-8

Keywords

Navigation