Abstract
In today’s societies, technology occupies a central position in different social spheres. In educational environments, robotics can act as an assistive tool for students with disabilities. More specifically, this tool helps autistic students in the development of attention, which is the fundamental skill in the cognitive and social development of the child, in activities in social contexts that are less stressful than human-human interaction. In this line, the aim of the study is to explore the application of robotics to favour communication and social interaction of autistic students, analysing attention. To this end, a pilot study was designed with the NAO robot in which four autistic students carried out activities related to imitation, play and social interaction. For data collection, the field notebook and an automatic system based on neural networks were used to calculate the child’s attention during the activity. The results show that 75% of the subjects focus their attention on the robot during the interaction. Therefore, it is concluded that the robot acts as an activator of attention and social interaction in the tasks developed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
This manuscript has no associated data or the data will not be deposited.
References
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing.
Ames, C., & Fletcher-Watson, S. (2010). A review of methods in the study of attention in autism. Developmental Review,30(1), 52–73. https://doi.org/10.1016/j.dr.2009.12.003
Anzalone, S., Xavier, J., Boucenna, S., Billeci, L., Narzisi, A., Muratori, F., Cohen, D., & Choetouani, M. (2019). Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recognition Letters,118(1), 42–50. https://doi.org/10.1016/j.patrec.2018.03.007
Arent, K., Kruk-Lasocka, J., Niemiec, T., & Szczepanowski, R. (2019). Social robots in diagnosis of autism among preschool children. In Proceedings of the 24 international conference on methods in automation and robotics (pp. 652–656). IEEE.
Arias, J. L. (2022). Guía para elaborar la operacionalización de variables. Espacio I + D. Innovación más Desarrollo. https://doi.org/10.31644/IMASD.28.2021.a02
Barnes, J., Park, C., Howard, A., & Jeon, M. (2021). Child-robot interaction a musical dance game: An exploratory comparison study between typically developing children and children with autism. International Journal of Human-Computer Interaction,37(2), 249–266. https://doi.org/10.1080/10447318.2020.1819667
Bedford, R., Jones, E. J. H., Johnson, M. H., Pickles, A., Charman, T., & Gliga, T. (2016). Sex differences in the association between infant markers and later autistic traits. Molecular Autism,7, 1–11. https://doi.org/10.1186/s13229-016-0081-0
Benson, V., Piper, J., & Fletcher-Watson, S. (2009). Abnormal saccadic sampling in people with autism spectrum disorder. Neuropsychologia,47, 1178–1182.
Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings of the Royal Society,274(1628), 3027–3031. https://doi.org/10.1098/rspb.2007.1019
Bonoma, T. (1985). Case research in marketing: Opportunities, problems, and a process. Journal of Marketing Research,22(2), 199–208. https://doi.org/10.2307/3151365
Bradley, H., Smith, B., Wilson, R. (2023). Qualitative and quantitative measures of joint attention development in the first year of life: A scoping review. Infant and Child Development. https://doi.org/10.1002/icd.2422.
Burack, J. A. (1994). Selective attention deficits in persons with autism: Preliminary evidence of an inefficient attentional lens. Journal of Abnormal Psychology,103, 535–543.
Cabibihan, J., Javed, H., Ang, M., & Aljunied, S. (2013). Why Robots? A survey on the roles and benefits of social robots in the therapy of children with autism. International Journal of Social Robotics,5(3), 593–618. https://doi.org/10.1007/s12369-013-0202-2
Cai, L., Zhou, X., Shen, Z., & Wang, Y. (2022). Recent development on robot assisted social skills intervention of children with ASD. In International conference on intelligent robotics and applications (pp. 403–412). Springer, Cham.
Cano, S., Díaz-Arancibia, J., Arango-López, J., Libreros, J., & García, M. (2023). Design path for a social robot for emotional Communication for Children with Autism Spectrum disorder (ASD). Sensors (Basel, Switzerland),23(11), 1–24. https://doi.org/10.3390/s23115291
Cano, S., González, C. S., Gil-Iranzo, R. M., & Albiol-Pérez, S. (2021). Affective communication for socially assistive robots (SARs) for children with autism spectrum disorder: A systematic review. Sensors,21, 5166. https://doi.org/10.3390/s21155166
Cao, H., Simut, R., Desmet, N., De Beir, A., De Perre, G., Vanderborght, B., & Vanderfaeille, J. (2020). Robot-assisted joint attention: A comparative study between children with autism spectrum disorder and typically developing children in Interaction with NAO. IEEE Access,8, 223325–223334. https://doi.org/10.1109/ACCESS.2020.3044483
Cao, H., Simut, R., Krepel, N., Vanderborght, B., & Vanderfaeillie, J. (2022). Could NAO robot function as model demonstrating joint attention skills for children with autism spectrum disorder? An exploratory study. International Journal of Humanoid Robotics,19(4), 1–21. https://doi.org/10.1142/S0219843622400060
Chawarska, K., Macari, S., Powell, K., DiNicola, L., & Shic, F. (2016). Enhanced social attention in female infant siblings at risk for autism. Journal of the American Academy of Child and Adolescent Psychiatry,55, 188–195. https://doi.org/10.1016/j.jaac.2015.11.016
Chowdhury, M., & Sadek, A. (2012). Advantages and limitations of artificial intelligence. Artificial Intelligence Applications to Critical Transportation Issues Transportation Research Circular, EC168, 6–8.
Clabaugh, C., Mahajan, K., Jain, S., Pakkar, R., Becerra, D., Shi, Z., Deng, E., Lee, R., Ragusa, G., & Matarić, M. (2019). Long-term personalization of an-in-home socially assistive robot for children with autism spectrum disorders. Frontiers in Robotics and AI,6, 110. https://doi.org/10.3389/frobt.2019.00110
Cornew, L., Dobkins, K. R., Akshoomoff, N., McCleery, J. P., & Carver, L. J. (2012). Atypical social referencing in infant siblings of children with autism spectrum disorders. Journal of Autism and Developmental Disorders,42(12), 2611–2621. https://doi.org/10.1007/s10803-012-1518-8
Damm, O., Malchus, K., Jaecks, P., Krach, S., Paulus, F., Naber, M., Jansen, A., Kamp-Becker, I., Einhaeuser-Treyer, W., Stenneken, P., & Wrede, B. (2013). Different gaze behavior in human–robot interaction in Asperger’s syndrome: An eye-tracking study. In IEEE RO-MAN (pp.368–369). IEEE.
David, D., Costescu, C., Matu, S., Szentagotai, A., & Dobrean, A. (2018). Developing joint attention for children with Autism in Robot-enhanced therapy. International Journal of Social Robotics,10(5), 595–605. https://doi.org/10.1007/s12369-017-0457-0
Delbruck, E., Yang, M., Yassine, A., & Grossman, E. (2019). Functional connectivity in ASD: Atypical pathways in brain networks supporting action observation and joint attention. Brain Research,1706(1), 157–165. https://doi.org/10.1016/j.brainres.2018.10.029
Durkin, M., Maenner, M., Baio, J., Christensen, D., Daniel, J., Fitzgerald, R., Imm, P., Li-Ching, L., Schieve, L., Van-Naardem, K., Wingate, M., & Yeargin-Allsopp, M. (2017). Autism spectrum disorder among US children (2002–2010): Socioeconomic, racial, and ethnic disparities. American Journal of Public Health,107(11), 1818–1826. https://doi.org/10.2105/AJPH.2017.304032
Fabio, R., Esposito, S., Carrozza, C., Pino, G., & Caprì, T. (2020). Correlations between facial emotion recognition and cognitive flexibility in autism spectrum disorder. Advances in Autism,6, 95–204.
Federici, S., Scherer, M., & Scherer, M. (2017). Assistive technology assessment handbook. CRC Press.
Feil-Seifer, D., & Mataric, M. (2005). Defining socially assistive robotics. In 9th international conference on rehabilitation robotics, ICORR 2005 (pp. 465–468). IEEE. 10.1109/ICORR.2005.1501143
Fernández-Alvarado, P., & Onandia-Hinchado, I. (2022). Perfil cognitivo del trastorno del espectro autista en población infanto-juvenil una revisión sistemática. Revista de Psicología Clínica con Niños y Adolescentes,9(3), 1–14. https://doi.org/10.21134/rpcna.2022.09.3.3
Fletcher-Watson, S., & Bird, G. (2020). Autism and empathy: What are the real link? Autism,24(1), 3–6. https://doi.org/10.1177/1362361319883506
Frazier, T. W., Strauss, M., Klingemier, E. W., Zetzer, E. E., Hardan, A. Y., Eng, C., & Youngstrom, E. A. (2017). A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. Journal of the American Academy of Child and Adolescent Psychiatry,56, 546–555. https://doi.org/10.1016/j.jaac.2017.05.005
Giannopulu, I., & Pradel, G. (2010). Multimodal interactions in free game play of children with autism and a mobile robot. NeuroRehabilitation,27(4), 305–311.
Greczek, J., Kaszubski, E., Atrash, A., & Matarić (2014). Graded cueing feedback in robot-mediated imitation practice for children with autism spectrum disorders. In The 23rd IEEE international symposium on robot and human interactive communication (pp. 561–566). IEEE.
Greenaway, R., & Plaisted, K. (2005). Top-down attentional modulation in autistic spectrum disorders is stimulus-specific. Psychological Science,16, 987–994.
Gustafsson, J. (2017). Single case studies vs. multiple case studies: A comparative study (Thesis). Halmstad University, Halmstad, Sweden.
Heale, R. and Twycross, A. (2018). What is a case study? Evid Based Nurs, 21(1), 7–8. https://doi.org/10.1136/eb-2017-102845.
Hegel, F., Krach, S., Kircher, T., Wrede, B., & Sagerer, G. (2008). Understanding social robots: A user study on anthropomorphism. In RO-MAN 2008—The 17th IEEE international symposium on robot and human interactive communication (pp. 574–579). IEEE.
Hernández, C., & Carpio, N. (2019). Introducción a Los tipos de muestro. Revista Alerta,2(1), 1–5.
Herrero, J., & Lorenzo, G. (2020). An immersive virtual reality educational intervention on people with autism spectrum disoders (ASD) for the development of communication skills and problem solving. Education and Information Technologies,25(1), 1689–1722. https://doi.org/10.1007/s10639-019-10050-0
Horwitz, E., Schoevers, R., Greaves-Lord, K., de Bildt, A., & Hartman, C. A. (2020). Adult manifestation of milder forms of autism spectrum disorder; autistic and nonautistic psychopathology. Journal of Autism and Developmental Disorders,50(8), 2973–2986. https://doi.org/10.1007/s10803-020-04403-9
Hours, C. M. (2022). Asd and adhd comorbidity: What are we talking about?. Frontiers in Psychiatry,13, 158.
Ingersoll, B., & Wainer, A. (2013). Initial efficacy of project ImPACT: A parent-mediated social communication intervention for young children with ASD. Journal of Autism and Developmental Disorders,43(12), 2943–2952. https://doi.org/10.1007/s10803-013-1840-9
Ip, H., Wong, S., Chan, D., Byrne, J., Li, C., Yuan, V., Lau, K., & Wong, J. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers & Education,117(1), 1–15. https://doi.org/10.1016/j.compedu.2017.09.010
Johnson, C., & Mayers, S. (2007). Identification and evaluation of children with autism spectrum disorders. Pediatrics,120(5), 1183–1215. https://doi.org/10.1542/peds.2007-2361
Kissine, M., Saint-Denis, A., & Mottron, L. (2023). Language acquisition can be truly atypical in autism: Beyond joint attention. Neuroscience & Biobehavioral Reviews,153, 105384. https://doi.org/10.1016/j.neubiorev.2023.105384
Kohli, M., Kumar, A., & Sinha, S. (2023). Robot facilitated rehabilitation of children with autism spectrum disorder: A 10 year scoping review. Expert System. https://doi.org/10.1111/exsy.13204
Landry, R., & Bryson, S. E. (2004). Impaired disengagement of attention in young children with autism. Journal of Child Psychology and Psychiatry,45, 1115–1122.
Le Couter, A., Lord, C., Rutter, M. (2003). The autism diagnostic interview-revised (ADI-R). Los Angeles, CA: Western Psychological Services
Lecler, A., Duron, L., & Soyer, P. (2023). Revolutionizing radiology with GPT-based models: Current applications, future possibilities and limitations of ChatGPT. Diagnostic and Intervention Imaging,104(6), 269–274. https://doi.org/10.1016/j.diii.2023.02.003
Lee, J., Takeshi, H., Nagai, C., Obinata, G., & Stefanov, D. (2012). Which robot features can stimulate better responses from children with autism in robot-assisted therapy? International Journal of Advanced Robotic Systems,9(3), 1–6. https://doi.org/10.5772/51128
Lian, X., Hong, W., Xu, X., Kimberly, K., & Wang, Z. (2023). The influence of picture book design on visual attention of children with autism: A pilot study. International Journal of Developmental Disabilities,69(6), 946–956. https://doi.org/10.1080/20473869.2022.2033590
Loockwood, G., Mason, L., Arora, R., Bhavnani, S., Dasgupta, J., Gulati, S., Gliga, T., & Johnson, M. (2023). Attention control in autism: Eye-tracking findings from pre-school children in a low- and middle-income country setting. Autism. https://doi.org/10.1177/1362361322114954
López, B., Gregory, N., & Freeth, M. (2023). Social attention patterns of autistic and non-autistic adults when viewing real versus reel people. Autism,27(8), 2372–2383. https://doi.org/10.1177/13623613231162
Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. L. (2012). Autism diagnostic observation schedule (ADOS-2) (2nd ed.). Western Psychological Services.
Lorenzo, G., Lledó, A., Pomares, J., & Roig-Vila, R. (2016). Design and application of an immersive virtual reality system to enhance emotional skills for children with autism spectrum disorders. Computers and Education,98(1), 192–205. https://doi.org/10.1016/j.compedu.2016.03.018
Lytridis, C., Kaburlasos, V., Bazinas, C., Papakostas, G., Sidiropoulus, G., Nikopoulou, V., Holeva, V., Papadopoulou, D., & Evangeliou, A. (2022). Behavioral data analysis of robot-assisted autism spectrum disorder (ASD) interventions based on lattice computing techniques. Sensors (Basel, Switzerland),22(2), 1–22. https://doi.org/10.3390/s22020621
Lytridis, C., Vrochidou, E., Chatzismatis, S., & Kaburlasos, V. (2018). Social engagement interaction games between children with autism and humanoid robot NAO. In International joint conference SOCO’18-CISIS’18-ICEUTE’18 (pp. 562–570). Springer.
Mann, T. A., & Walker, P. (2003). Autism and a deficit in broadening the spread of visual attention. Revista de psicología infantil y psiquiatría infantil y disciplinas afines, 44(2), 274–284
Martins, P., Faria, G., & Cerqueira, J. (2020). I2E: A cognitive architecture based on emotions for assistive robotics applications. Electronics,9(10), 1–19. https://doi.org/10.3390/electronics9101590
Mazurek, M., Shattuck, P., Wagner, M., & Cooper, B. (2012). Prevalence and correlates of screen-based media use among youth with autism spectrum disorders. Journal of Autism and Developmental Disorders,42(1), 1757–1767. https://doi.org/10.1007/s10803-011-1413-8
McCusker, K., & Gunaydin, S. (2014). Research using qualitative, quantitative or mixed methods and choice based on the research. Perfusion,30(7), 1–6. https://doi.org/10.1177/0267659114559116
Michaud, F., Duquette, A., & Nadeau, I. (2003). Characteristics of mobile robotic toys for children with pervasive developmental disorders. In SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (pp.2938–2943). IEEE: USA.
Miller, C., Smith, S., & Pugatch, M. (2020). Experimental and quasi-experimental designs in implementation research. Psychiatry Research,283(1), 1–17. https://doi.org/10.1016/j.psychres.2019.06.027
Moore, C., Carter, R., Nietert, P., & Stewart, P. (2011). Recommendations for planning pilot studies in clinical and translational research. Clinical and Translational Science,4(5), 332–3377. https://doi.org/10.1111/j.1752-
Morales-Hidalgo, P., Voltas, N., & Canals, J. (2021). Autism spectrum disorder prevalence and associated sociodemographic factors in the school population: EPINED study. Autism,25(7), 1999–2011. https://doi.org/10.1177/13623613211007717
Mundy, P. (2003). Annotation: The neural basis of social impairments in autism: The role of the dorsal medial-frontal cortex and anterior cingulate system. The Journal of Child Psychology and Psychiatry and Allied Disciplines,44(6), 793–809. https://doi.org/10.1111/1469-7610.00165
Mundy, P. (2016). Autism and joint attention: Development, neuroscience, and clinical fundamentals. Guilford Press.
Mundy, P., & Crowson, M. (1997). Joint attention and early social communication: Implications for research on intervention with autism. Journal of Autism and Developmental Disorders,27, 653–676. https://doi.org/10.1023/A:1025802832021
Mundy, P., & Newell, L. (2007). Attention, joint attention, and social cognition. Current Directions in Psychological Science,16(5), 269–274. https://doi.org/10.1111/j.1467-8721.2007.00518.x
Mundy, P., Sullivan, L., & Mastergeorge, A. M. (2009). A parallel and distributed-processing model of joint attention, social cognition and autism. Autism Research: Official Journal of the International Society for Autism Research,2(1), 2–21. https://doi.org/10.1002/aur.61
Muse, A., & Baldwin, J. (2021). Quasi-experimental research design. In J. Barnes & D. Forde (Eds.), The encyclopedia of research methods in criminology and criminal justice (pp. 307–310). USA: Wiley.
Nedelcu, D., & Buceta, M. (2012). El perfil cognitivo de los niños con trastorno de asperger y autismo de alto funcionamiento. RIDEP,34(1), 103–116.
Nieswiadomy, R. M. (2002). Foundations of nursing research (4th ed.). Pearson Education
Paparella, T., Stickles, K., Freeman, S., & Kasari, C. (2011). The emergence of nonverbal joint attention and requesting skills in young children with autism. Journal of Communication Disoders,44(6), 569–583. https://doi.org/10.1016/j.jcomdis.2011.08.002
Parsons, S. (2016). Authenticity in virtual reality for assessment and intervention in autism: A conceptual review. Educational Research Review,19, 138–157. https://doi.org/10.1016/j.edurev.2016.08.001
Pennington, R., Welch, K., Kondaurova, M., Kuravackel, G., Zheng, Q., et al. (2023). Effects of a social robot prompter on the vocal interactions of peers with autism spectrum disorder. Education and Training in Autism and Developmental Disabilities,58(4), 480–492.
Pennissi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., & Pioggia, G. (2016). Autism and social robotics: A systematic review. Autism Research,9(2), 165–183. https://doi.org/10.1002/aur.1527
Pérez-Aguiar, W. (1999). El estudio de casos. In F. J. Sarabia (Ed), Metodologia para la investigación en marketing ydirección de empresas (pp. 108-110). Pirámide, España.
Pierno, A., Mari, M., Lusher, D., & Castiello, U. (2008). Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia,31(1), 448–454. https://doi.org/10.1016/j.neuropsychologia.2007.08.020
Piltz, V., Halldner, L., Markus, J., Fridell, A., Bölte, S., & Olsson, N. (2023). Symptom similarities and differences in social interaction between autistic children and adolescents with and without ADHD. Current Psychology. https://doi.org/10.1007/s12144-023-04499-z
Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. Journal of Neuroscience,4(7), 1863–1874.
Puglisi, A., Capri, T., Pignolo, L., Gismondo, S., Chilà, P., Minutoli, R., Marino, F., Failla, C., Arnao, A., Tartarisco, G., Cerasa, A., & Pioggia, G. (2022). Social humanoid robots for children with autism spectrum disorders: A review of modalities, indications, and Pitfalls. Children,9(7), 953–967. https://doi.org/10.3390/children9070953
Reeves, B., & Nass, C. (1998). How people treat computers, television, and new media like real people and places. The Media Eq (2nd ed.). Cambridge University Pres.
Robins, B., & Dautenhahn, K. (2014). Tactile interactions with humanoid robot: Novel play scenario implementations with children with autism. International Journal of Social Robotics,6(3), 397–415. https://doi.org/10.1007/s12369-014-0228-0
Robins, B., Dautenhahn, K., Boekhorst, R., & Billard, A. (2005). Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Universal Access in the Information Society,4(2), 105–120. https://doi.org/10.1007/s10209-005-0116-3
Rong, Y., Yang, C. J., Jin, Y., & Wang, Y. (2021). Prevalence of attention-deficit/hyperactivity disorder in individuals with autism spectrum disorder: A meta-analysis. Research in Autism Spectrum Disorders,83, 101759. https://doi.org/10.1016/j.rasd.2021.101759
Salari, N., Rasoulpoor, S., Rasoulpoor, S., Shohaimi, S., Jafarpour, S., Abdoli, N., Khaledi-Paveh, B., & Mohammadi. (2022). The global prevalence of autism spectrum disorder: A comprehensive systematic review and meta-analysis. Italian Journal of Pediatrics,48(1), 1–16. https://doi.org/10.1186/s13052-022-01310-w
Scassellati, B., Admoni, H., & Matarić, M. (2012). Robots for use in autism research. Annual Review Biomedical Engineering,14(1), 275–294. https://doi.org/10.1146/annurev-bioeng-071811-150036
Simons, D. J. (2000). Current approaches to change blindness. Visual Cognition,7(1–3), 1–15.
So, W., Law, W., Cheng, C., Lee, C., Ng, K., Kwok, F., Lam, H., & Lam, K. (2023). Comparing the effectiveness of robot-based to human-based intervention in improving joint attention in autistic children. Frontiers in Psychiatry,14(1), 1–13. https://doi.org/10.3389/fpsyt.2023.1114907
Soleiman, P., Moradi, H., Mehralizadeh, B., Ameri, H., Arriaga, R., Pouretemad, H., Baghbanzadeh, N., & Vahid, L. (2023). Fully robotic social environment for teaching and practicing affective interaction: Case of teaching emotion recognition skills to children with autism spectrum disorder, a pilot study. Frontiers in Robotics and AI,10(1), 1–15. https://doi.org/10.3389/frobt.2023.1088582
Takata, K., Yoshikawa, Y., Muramatsu, T., Matsumoto, Y., Ishiguro, H., Mimura, M., & Kumazaki, H. (2023). Social skills training using multiple humanoid robots for individuals with autism spectrum conditions. Frontiers in Psychiatry,14, 1168837. https://doi.org/10.3389/fpsyt.2023.1168837
Tanaka, J. W., & Sung, A. (2016). The eye avoidance hypothesis of autism face processing. Journal of Autism and Developmental Disorders,46(5), 1538–1552. https://doi.org/10.1007/s10803-013-1976-7
Telisheva, Z., Amirova, A., Rakhymbayeva, N., Zhanatkyzy, A., & Sandygulova, A. (2022). The quantitative case-by-case analyses of the Socio-Emotional outcomes of children with ASD in Robot-assisted autism therapy. Multimodal Technologies and Interaction,6(6), 46. https://doi.org/10.3390/mti6060046
Thill, S., Pop, C., Belpaeme, T., Ziemke, T., & Vanderborght, B. (2013). Robot-assisted therapy for autism spectrum disorders with (partially) autonomous control: Challenges and outlook. Paladyn,3(4), 209–217. https://doi.org/10.2478/s13230-013-0107-7
Tickle-Degnen, L. (2013). Nuts and bolts of conducting feasibility studies. The American Journal of Occupational Therapy,67(2), 171–176. https://doi.org/10.5014/ajot.2013.006270
Tomasello, M. (2008). Origins of human communication. The MIT Press.
Toseeb, U. (2022). Sibling conflict during COVID-19 in families with special educational needs and disabilities. British Journal of Educational Psychology,92(1), 319–339. https://doi.org/10.1111/bjep.12451
Valagkouti, I., Troussas, C., Krouska, A., Feidakis, M., & Sgouropoulou, C. (2022). Emotion recognition in Human-Robot interaction using NAO Robot. Computers,11(5), 1–13. https://doi.org/10.3390/computers11050072
Vivanti, G., Fanning, P., Hocking, D., Sievers, S., & Dissanayake, C. (2017). Social attention, joint attention and sustained attention in autism spectrum disorder and Williams syndrome: Convergences and divergences. Journal of Autism and Developmental Disoders,47(1), 1866–1877. https://doi.org/10.1007/s10803-017-3106-4
Walęcka, M., Wojciechowska, K., & Wichniak, A. (2022). Central coherence in adults with a high-functioning autism spectrum disorder. In a search for a non-self-reporting screening tool. Applied Neuropsychology: Adult,29(4), 677–683. https://doi.org/10.1080/23279095.2020.1804908
Wang, J., Chen, Y., Huo, S., Mai, L., & Jia, F. (2023). Research hotspots and trends of social robot interaction design: A bibliometric analysis. Sensors,23(23), 1–20. https://doi.org/10.3390/s23239369
Warren, Z., Zheng, Z., Swanson, A., Bekele, E., Zhang, L., Crittendon, J., Weitlauf, A., & Sarkar, N. (2015). Can robotic interaction improve joint attention skill? Journal of Autism and Developmental Disorders,45(1), 3726–3734. https://doi.org/10.1007/s10803-013-1918-4
Wijayasinghe, I., Ranatunga, I., Balakrishnan, N., Bugnariu, N., & Popa, O. (2016). Human robot gesture analysis for objective assessment of autism spectrum disoder. International Journal of Social Robotics,8(5), 695–707. https://doi.org/10.1007/s12369-016-0379-2
Willis, D. (2023). Formulating the Research Question and Framing the Hypothesis. Respir Care 68 (12):1180-1185, doi: 10.4187/respcare.10975.
Woo, H., LeTendre, G. K., Pham-Shouse, T., & Xiong, Y. (2021). The use of social robots in classrooms: A review of field-based studies. Educational Research Review,33(1), 100388. https://doi.org/10.1016/j.edurev.2021.100388
World Medical Association. (2013). World medical association declaration of Helsinki: Ethical principles for medical research involving. Human Subjects JAMA,310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053
Yin, R. (2003). Case study research: Design and methods (2nd ed.). Sagae.
Yu, Q., Li, E., Li, L. & Liang, W. (2020). Efficacy of Interventions Based on Applied Behavior Analysis for Autism Spectrum Disorder: A Meta-Analysis. Psychiatry Investig., 17(5): 432–443. https://doi.org/10.30773/pi.2019.0229
Yoder, P., Stone, W., Walden, T., & Malesa, E. (2009). Predicting social impairment and ASD diagnosis in younger siblings of children with autism spectrum disorder. Journal of Autism and Developmental Disorders,39, 1381–1391. https://doi.org/10.1007/s10803-009-0753-0
Funding
The authors declare having received the following financial support for the research, authorship and/or publication of this article: This article was supported by the Programa Estatal de I + D + i Orientado a los Retos de la Sociedad del Ministerio de Ciencia e Innovación Español. PID2020-112611RB-I00/AEI/https://doi.org/10.13039/501100011033 and the Agencia Estatal de la Investigación. Title of the project “The application of virtual reality and robotics in communication and social interaction of students with autism spectrum disorder”.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors indicate that there are no conflicts of interest.
Data availablity
Authors do not want the data from the study to be available.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lorenzo Lledó, G., Lorenzo-Lledó, A. & Gilabert-Cerdá, A. Application of Robotics in Autistic Students: A Pilot Study on Attention in Communication and Social Interaction. Tech Know Learn 29, 757–780 (2024). https://doi.org/10.1007/s10758-023-09718-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10758-023-09718-x