Skip to main content
Log in

Regular Lattice and Small-World Spin Model Simulations Using CUDA and GPUs

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Data-parallel accelerator devices such as Graphical Processing Units (GPUs) are providing dramatic performance improvements over even multi-core CPUs for lattice-oriented applications in computational physics. Models such as the Ising and Potts models continue to play a role in investigating phase transitions on small-world and scale-free graph structures. These models are particularly well-suited to the performance gains possible using GPUs and relatively high-level device programming languages such as NVIDIA’s Compute Unified Device Architecture (CUDA). We report on algorithms and CUDA data-parallel programming techniques for implementing Metropolis Monte Carlo updates for the Ising model using bit-packing storage, and adjacency neighbour lists for various graph structures in addition to regular hypercubic lattices. We report on parallel performance gains and also memory and performance tradeoffs using GPU/CPU and algorithmic combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niss M.: History of the Lenz-Ising model 1920-1950: from ferromagnetic to cooperative phenomena. Arch. Hist. Exact Sci. 59, 267–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ising E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fuer Physik 31, 253–258 (1925)

    Article  Google Scholar 

  3. Onsager L.: Crystal statistics I. Two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baxter, R.J.: Exactly solved models in statistical mechanics. Number ISBN 0-12-083180-5. Academic Press, London (1982)

  5. Anderson P.W.: New approach to the theory of superexchange interactions. Phys. Rev. 115, 2–13 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bhanot G., Duke D., Salvador R.: A fast algorithm for the Cyber 205 to simulate the 3d Ising Model. J. Stat. Phys. 44, 985–1002 (1988)

    Article  Google Scholar 

  7. Blöte H.W.J., Compagner A., Croockewit J.H., Fonk Y.T.J.C., Heringa J.R., Hoogland A., Smit T.S., van Willigen A.L.: Monte Carlo renormalization of the three-dimensional Ising Model. Physica A 161, 1–22 (1989)

    Article  Google Scholar 

  8. Pawley G.S., Swendsen R.H., Wallace D.J., Wilson K.G.: Monte-Carlo renormalization group calculations of critical behaviour in the simple cubic Ising model. Phys. Rev. B 29, 4030–4040 (1984)

    Article  Google Scholar 

  9. Baillie C., Gupta R., Hawick K., Pawley G.: Monte-Carlo renormalisation group study of the three-dimensional Ising Model. Phys. Rev. B 45, 10438–10453 (1992)

    Article  Google Scholar 

  10. Preis T., Virnau P., Paul W., Schneider J.J.: GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model. J. Comput. Phys. 228, 4468–4477 (2009)

    Article  MATH  Google Scholar 

  11. Boyer, D., Miramontes, O.: Interface motion and pinning in small-world networks. Phys. Rev. E 67 (2003)

  12. Pȩkalski, A.: Ising model on a small world network. Phys. Rev. E 64 (2001)

  13. Jeong, D., Hong, H., Kim, B.J., Choi, M.Y.: Phase transition in the Ising model on a small-world network with distance-dependent interactions. Phy. Rev. E 68 (2003)

  14. Kim, B.J., Hong, H., Holme, P., Jeon, G.S., Minnhagen, P., Choi, M.Y.: XY model in small-world networks. Phy. Rev. E 64 (2001)

  15. Hong H., Kim B.J., Choi M.Y.: Comment on “Ising model on a small world network”. Phy. Rev. E 66, 018101 (2002)

    Article  Google Scholar 

  16. Yi, H., Choi, M.S.: Effect of quantum fluctuations in an Ising system on small-world networks. Phy. Rev. E 67 (2003)

  17. Herrero, C.P.: Ising model in small-world networks. Phys. Rev. E 65 (2002)

  18. Hawick, K.A., James, H.A.: Ising model scaling behaviour on z-preserving small-world networks. Technical report arXiv.org Condensed Matter: cond-mat/0611763, Information and Mathematical Sciences, Massey University (2006)

  19. Hawick, K.A.: Domain growth in alloys. PhD thesis, Edinburgh University (1991)

  20. Binder K.: The Monte-Carlo method for the study of phase transitions: a review of some recent progress. J. Comp. Phys. 59, 1–55 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. NVIDIA® Corporation: NVIDIA CUDATM Programming Guide Version 2.3. (2009) Last accessed August 2009

  22. Leist A., Playne D., Hawick K.: Exploiting graphical processing units for data-parallel scientific applications. Concurr. Comput. 21, 2400–2437 (2009) CSTN-065

    Article  Google Scholar 

  23. Flanders, P., Reddaway, S.: Parallel data transforms. DAP Series, active memory technology (1988)

  24. Hawick, K.A., Playne, D.P.: Hypercubic storage layout and transforms in arbitrary dimensions using GPUs and CUDA. Technical Report CSTN-096, Computer Science, Massey University (2009) Submitted to Concurrency and Computation: Practice and Experience

  25. Hawick K.A., Playne D.P.: Turning partial differential equations into scalable software. Massey University, Technical report, Computer Science (2009)

    Google Scholar 

  26. Marsaglia, G., Zaman, A.: Toward a universal random number generator. FSU-SCRI-87-50, Florida State University (1987)

  27. Hawick, K.A., Leist, A., Playne, D.P.: Mixing Multi-Core CPUs and GPUs for scientific simulation software. Technical Report CSTN-091, Computer Science, Massey University (2009)

  28. Wolff U.: Collective Monte Carlo updating for spin systems. Phys. Lett. 228, 379 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Hawick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawick, K.A., Leist, A. & Playne, D.P. Regular Lattice and Small-World Spin Model Simulations Using CUDA and GPUs. Int J Parallel Prog 39, 183–201 (2011). https://doi.org/10.1007/s10766-010-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-010-0143-4

Keywords

Navigation