Skip to main content
Log in

Hierarchical Synthesis of Quantum and Reversible Architectures

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Reversible hardware finds application in emerging areas such as low power circuit design, quantum computing, optical computing, and DNA computing. Intensive research has recently focused on the synthesis of quantum and reversible architectures. Quantum architectures often take advantage of reversible circuit synthesis methods but in general they require dedicated synthesis approaches because they represent a more general computing paradigm. Most of these quantum and reversible synthesis approaches derive efficient or even optimal circuits with scalability being their major drawback: they can only handle small circuits (up to a few hundred inputs for the most promising ones). In this paper, we propose a graph-based hierarchical synthesis method for large reversible and quantum architectures which can be combined with any of the existing synthesis methods to deliver unlimited scalability in synthesizing arbitrary large and irregular architectures. The specification of any complex function is provided in the form of a sequential algorithm consisting of primitive pre-synthesized operations available in a library. The components of the library may have been designed by ad-hoc methods or synthesized by the known methods in the literature or even by the proposed synthesis procedure. The synthesized architecture is represented as a dependence graph whose nodes correspond to the available components of the library and their respective inverses so as no garbage remains at the output. The method can be recursively applied at multiple levels to build any complex reversible or quantum architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abhari, A.J., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the ACM 11th Conference on Computing Frontiers, Art. 1 (2014)

  2. Balensiefer, S., Kreger-Stickles, L., Oskin, M.: An Evaluation Framework and Instruction Set Architecture for Ion-Trap based Quantum Micro-architectures, 32nd ISCA, pp. 186–196 (2005)

  3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  Google Scholar 

  4. Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54(2), 1034–1063 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cybenko, G.: Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 3(2), 27–32 (2001)

    Article  Google Scholar 

  7. Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: 16th International Symposium VDAT, pp. 383–392 (2012)

  8. Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)

    Article  MathSciNet  Google Scholar 

  9. Green, A.S., Lumsdaine, P.L., Ross, N.J.: Quipper: A Scalable Quantum Programming Language, ACM PLDI 13 (2013)

  10. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)

    Article  Google Scholar 

  11. Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.-H., Van Meter, R., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New J. Phys. 14, 115023 (2012)

    Article  Google Scholar 

  12. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach—Zehnder Interferometer Based Design of all Optical Reversible Binary Adder, DATE (2012)

  13. Kreger-Stickles, L., Oskin, M.: Microcoded architectures for Ion-tap quantum computers. In: 35th ISCA, pp. 165–176 (2008)

  14. Landauer, R.: Irreversiblity and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin, C-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum Module Library, ACM JETC, vol. 11(1), Art. 7 (2014)

  16. Liu, X., Kubiatowicz, J.: Chisel-Q: Designing quantum circuits with a scala embedded language. In: 31st ICCD, pp. 427–434 (2013)

  17. Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible Logic Synthesis, DAC, pp. 318–323 (2003)

  18. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. of Electron. Syst. 12(4), 42:1–42:28 (2007)

    Article  Google Scholar 

  19. Metodi, T.S., Chong, F.T.: Quantum Computing for Computer Architects. Morgan and Claypool Publishers, San Rafael (2006)

    Google Scholar 

  20. Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: 38th ISCA (2005)

  21. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  22. Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factoring algorithm. Quantum Inf. Comput. 14(7&8), 0649–0682 (2014)

    MathSciNet  Google Scholar 

  23. Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)

    Article  Google Scholar 

  24. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a survey. ACM J. Comput. Surveys 45(2), 21 (2013)

    MATH  Google Scholar 

  25. Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM JETC. 6(4), Art. 13 (2010)

  26. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)

    Article  Google Scholar 

  27. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)

    Article  Google Scholar 

  28. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.: Quantum memory hierarchies: efficient designs to match available parallelism in quantum computing. In: 33rd ISCA, pp. 378–390 (2006)

  30. Toffoli, T.: Reversible computing, MIT/LCS/TM-151 (1980)

  31. Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Phys. Rev. A 71, 052320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vartiainen, J.J., Mottonen, M., Salomaa, M.S.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177902 (2004)

    Article  Google Scholar 

  33. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM/IEEE DAC, pp. 270–275 (2009)

  34. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  35. Wille, R., Offermann, S., Drechsler, R.: SyReC: A Programming Language for Synthesis of Reversible Circuits, Forum on Specification and Design Languages (FDL), pp. 184–189 (2010)

  36. Wood, D.H., Chen, J.: Fredkin gate circuits via recombination enzymes. Congr. Evol. Comput. II, 1896–2000 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Gizopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlidis, A., Gizopoulos, D. Hierarchical Synthesis of Quantum and Reversible Architectures. Int J Parallel Prog 44, 1028–1053 (2016). https://doi.org/10.1007/s10766-016-0407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-016-0407-8

Keywords

Navigation