Abstract
Reversible hardware finds application in emerging areas such as low power circuit design, quantum computing, optical computing, and DNA computing. Intensive research has recently focused on the synthesis of quantum and reversible architectures. Quantum architectures often take advantage of reversible circuit synthesis methods but in general they require dedicated synthesis approaches because they represent a more general computing paradigm. Most of these quantum and reversible synthesis approaches derive efficient or even optimal circuits with scalability being their major drawback: they can only handle small circuits (up to a few hundred inputs for the most promising ones). In this paper, we propose a graph-based hierarchical synthesis method for large reversible and quantum architectures which can be combined with any of the existing synthesis methods to deliver unlimited scalability in synthesizing arbitrary large and irregular architectures. The specification of any complex function is provided in the form of a sequential algorithm consisting of primitive pre-synthesized operations available in a library. The components of the library may have been designed by ad-hoc methods or synthesized by the known methods in the literature or even by the proposed synthesis procedure. The synthesized architecture is represented as a dependence graph whose nodes correspond to the available components of the library and their respective inverses so as no garbage remains at the output. The method can be recursively applied at multiple levels to build any complex reversible or quantum architecture.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abhari, A.J., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: ScaffCC: a framework for compilation and analysis of quantum computing programs. In: Proceedings of the ACM 11th Conference on Computing Frontiers, Art. 1 (2014)
Balensiefer, S., Kreger-Stickles, L., Oskin, M.: An Evaluation Framework and Instruction Set Architecture for Ion-Trap based Quantum Micro-architectures, 32nd ISCA, pp. 186–196 (2005)
Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)
Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54(2), 1034–1063 (1996)
Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)
Cybenko, G.: Reducing quantum computations to elementary unitary operations. Comput. Sci. Eng. 3(2), 27–32 (2001)
Drechsler, R., Wille, R.: Reversible circuits: recent accomplishments and future challenges for an emerging technology. In: 16th International Symposium VDAT, pp. 383–392 (2012)
Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible Toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)
Green, A.S., Lumsdaine, P.L., Ross, N.J.: Quipper: A Scalable Quantum Programming Language, ACM PLDI 13 (2013)
Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)
Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.-H., Van Meter, R., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New J. Phys. 14, 115023 (2012)
Kotiyal, S., Thapliyal, H., Ranganathan, N.: Mach—Zehnder Interferometer Based Design of all Optical Reversible Binary Adder, DATE (2012)
Kreger-Stickles, L., Oskin, M.: Microcoded architectures for Ion-tap quantum computers. In: 35th ISCA, pp. 165–176 (2008)
Landauer, R.: Irreversiblity and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)
Lin, C-C., Chakrabarti, A., Jha, N.K.: QLib: Quantum Module Library, ACM JETC, vol. 11(1), Art. 7 (2014)
Liu, X., Kubiatowicz, J.: Chisel-Q: Designing quantum circuits with a scala embedded language. In: 31st ICCD, pp. 427–434 (2013)
Miller, D.M., Maslov, D., Dueck, G.W.: A Transformation Based Algorithm for Reversible Logic Synthesis, DAC, pp. 318–323 (2003)
Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible Toffoli networks. ACM Trans. Des. Autom. of Electron. Syst. 12(4), 42:1–42:28 (2007)
Metodi, T.S., Chong, F.T.: Quantum Computing for Computer Architects. Morgan and Claypool Publishers, San Rafael (2006)
Metodi, T.S., Thaker, D.D., Cross, A.W., Chong, F.T., Chuang, I.L.: A quantum logic array microarchitecture: scalable quantum data movement and computation. In: 38th ISCA (2005)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2011)
Pavlidis, A., Gizopoulos, D.: Fast quantum modular exponentiation architecture for Shor’s factoring algorithm. Quantum Inf. Comput. 14(7&8), 0649–0682 (2014)
Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM JETC 2(4), 277–293 (2006)
Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits—a survey. ACM J. Comput. Surveys 45(2), 21 (2013)
Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM JETC. 6(4), Art. 13 (2010)
Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)
Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(6), 1000–1010 (2006)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Thaker, D.D., Metodi, T.S., Cross, A.W., Chuang, I.L., Chong, F.T.: Quantum memory hierarchies: efficient designs to match available parallelism in quantum computing. In: 33rd ISCA, pp. 378–390 (2006)
Toffoli, T.: Reversible computing, MIT/LCS/TM-151 (1980)
Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Phys. Rev. A 71, 052320 (2005)
Vartiainen, J.J., Mottonen, M., Salomaa, M.S.: Efficient decomposition of quantum gates. Phys. Rev. Lett. 92(17), 177902 (2004)
Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions. In: ACM/IEEE DAC, pp. 270–275 (2009)
Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer, Berlin (2010)
Wille, R., Offermann, S., Drechsler, R.: SyReC: A Programming Language for Synthesis of Reversible Circuits, Forum on Specification and Design Languages (FDL), pp. 184–189 (2010)
Wood, D.H., Chen, J.: Fredkin gate circuits via recombination enzymes. Congr. Evol. Comput. II, 1896–2000 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pavlidis, A., Gizopoulos, D. Hierarchical Synthesis of Quantum and Reversible Architectures. Int J Parallel Prog 44, 1028–1053 (2016). https://doi.org/10.1007/s10766-016-0407-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10766-016-0407-8