Abstract
As a common processing method, query is widely used in many areas, such as graph processing, machine learning, statistics. However, queries are usually priced according to vendor-specified fixed views (API) or number of transactions, which ignores query heterogeneity(computing resource consumption for query and information that the answer brings) and violates the microeconomic principles. In this work we study the relational query pricing problem and design efficient auctions by taking into account both information (i.e., data) value and query resource consumption. Different from the existing query pricing schemes, query auction determines data prices that reflect the demand–supply of shared computing resources and information value (i.e., price discovery). We target query auction that runs in polynomial time and achieves near-optimal social welfare with a good approximation ratio, while elicits truthful bids from consumers. Towards these goals, we adapt the posted pricing framework in game-theoretic perspective by casting the query auction design into an Integer Linear Programming problem, and design a primal-dual algorithm to approximate the NP-hard optimization problem. Theoretical analysis and empirical studies driven by a real-world data market benchmark verify the efficiency of our query auction schema.














Similar content being viewed by others
References
https://datamarket.azure.com/browse/data. Accessed 28 March 2017
http://www.infochimps.com/infochimps-cloud/cloud-services/cloud-queries/. Accessed 28 March 2017
https://www.aggdata.com/. Accessed 28 March 2017
https://aws.amazon.com/ec2/spot/. Accessed 28 March 2017
http://hbase.apache.org/. Accessed 28 March 2017
http://www.postgresql.org/docs/current/static/runtime-config-query.html. Accessed 28 March 2017
Ahmad, M., Duan, S.: Predicting completion times of batch query workloads using interaction-aware models and simulation. In: Proceedings of the 14th International Conference on Extending Database Technology, pp. 449–460. ACM (2011)
Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based query performance modeling and prediction. In: ICDE 2012, pp. 390–401. IEEE (2012)
Balazinska, M., Howe, B., Suciu, D.: Data markets in the cloud: an opportunity for the database community. Proc. VLDB Endow. 4, 12 (2011)
Cahoon, B., McKinley, K.S., Lu, Z.: Evaluating the performance of distributed architectures for information retrieval using a variety of workloads. ACM Trans. Inf. Syst. (TOIS) 18(1), 1–43 (2000)
Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 205–218 (2008)
Duggan, J., Cetintemel, U., Papaemmanouil, O., Upfal, E.: Performance prediction for concurrent database workloads. In: SIGMOD 2011, pp. 337–348. ACM (2011)
Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson, D.: Predicting multiple metrics for queries: better decisions enabled by machine learning. In: ICDE 2009, pp. 592–603. IEEE (2009)
Giceva, J., Alonso, G., Roscoe, T., Harris, T.: Deployment of query plans on multicores. Proc. VLDB Endow. 8(3), 233–244 (2014)
Graefe, G., McKenna, W.J.: The volcano optimizer generator: extensibility and efficient search. In: Ninth International Conference on Data Engineering, 1993. Proceedings, pp. 209–218. IEEE (1993)
Kellerer, H., Pferschy, U., Pisinger, D.: Introduction to NP-Completeness of knapsack problems. In: Knapsack Problems, pp. 483–493. Springer, Berlin, Heidelberg (2004)
Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.: Query-based data pricing. In: Proceedings of the 31st Symposium on Principles of Database Systems, pp. 167–178. ACM (2012)
Koutris, P., Upadhyaya, P., Balazinska, M., Howe, B., Suciu, D.: Toward practical query pricing with querymarket. In: SIGMOD 2013, pp. 613–624. ACM (2013)
Li, C., Li, D.Y., Miklau, G., Suciu, D.: A theory of pricing private data. ACM Trans. Database Syst. (TODS) 39(4), 34 (2014)
Li, C., Miklau, G.: Pricing aggregate queries in a data marketplace. In: WebDB, pp. 19–24 (2012)
Li, J., König, A.C., Narasayya, V., Chaudhuri, S.: Robust estimation of resource consumption for sql queries using statistical techniques. Proc. VLDB Endow. 5(11), 1555–1566 (2012)
Li, J., Naughton, J., Nehme, R.V.: Resource bricolage for parallel database systems. Proc. VLDB Endow. 8(1), 25–36 (2014)
Li, Z., Li, B., Zhu, Y.: Designing truthful spectrum auctions for multi-hop secondary networks. IEEE Trans. Mob. Comput. 14(2), 316–327 (2015)
Liu, Y., Zhou, C., Gao, J., Fan, Z.: Giraphasync: supporting online and offline graph processing via adaptive asynchronous message processing. In: ACM International on Conference on Information and Knowledge Management, pp. 479–488 (2016)
Lorie, R.A.: XRM: An extended (N-ary) relational memory. IBM (1974)
Lu, Z., McKinley, K.S.: Partial collection replication for information retrieval. Inf. Retr. 6(2), 159–198 (2003)
Mei, Q., Fang, H., Zhai, C.: A study of poisson query generation model for information retrieval. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 319–326. ACM (2007)
Mozafari, B., Curino, C., Madden, S.: Dbseer: resource and performance prediction for building a next generation database cloud. In: CIDR (2013)
Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
Nisan, N., Roughgarden, T., Vazirani, V.V.: Algorithmic Game Theory, vol. 1. Cambridge University Press, Cambridge (2007)
Padala, P., Shin, K.G., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Salem, K.: Adaptive control of virtualized resources in utility computing environments. In: ACM SIGOPS Operating Systems Review, vol. 41, pp. 289–302. ACM (2007)
Portosa, A., Rafique, M.M., Kotoulas, S., Foschini, L., Corradi, A.: Heterogeneous cloud systems monitoring using semantic and linked data technologies. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 497–503. IEEE (2015)
Shi, W., Zhang, L., Wu, C., Li, Z., Lau, F.: An online auction framework for dynamic resource provisioning in cloud computing. ACM SIGMETRICS Perform. Eval. Rev. 42(1), 71–83 (2014)
Soror, A.A., Minhas, U.F., Aboulnaga, A., Salem, K., Kokosielis, P., Kamath, S.: Automatic virtual machine configuration for database workloads. ACM Trans. Database Syst. (TODS) 35(1), 7 (2010)
Varian, H.R.: Pricing Information Goods, pp. 190–202 (1998). http://amitre.synthasite.com/resources/varian_Hal_price-info-goods.pdf
Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigumus, H., Naughton, J.F.: Predicting query execution time: are optimizer cost models really unusable? In: ICDE 2013, pp. 1081–1092. IEEE (2013)
Xiong, P., Chi, Y., Zhu, S., Moon, H.J., Pu, C., Hacigümüş, H.: Intelligent management of virtualized resources for database systems in cloud environment. In: ICDE 2011, pp. 87–98. IEEE (2011)
Yan, Y., Chen, L.J., Zhang, Z.: Error-bounded sampling for analytics on big sparse data. Proc. Vldb Endow. 7(13), 1508–1519 (2014)
Zhang, L., Li, Z., Wu, C.: Dynamic resource provisioning in cloud computing: a randomized auction approach. In: Proceedings—IEEE INFOCOM, pp. 433–441 (2014)
Zhang, X., Wu, C., Li, Z., Lau, F.: A truthful (1-\(\varepsilon \))-optimal mechanism for on-demand cloud resource provisioning. In: INFOCOM 2015, pp. 1053–1061. IEEE (2015)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61772228), National Key Research and Development Program Of China (Grant Nos. 2016YFB0201503 and 2016YFB0701101), Major Special Research Project of Science and Technology Department of Jilin Province (20160203008GX), Jilin Scientific and Technological Development Program (20170520066JH) and Graduate Innovation Fund of Jilin University (2017069).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, X., Wei, X., Gao, S. et al. A Novel Auction-Based Query Pricing Schema. Int J Parallel Prog 47, 759–780 (2019). https://doi.org/10.1007/s10766-017-0534-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10766-017-0534-x