Skip to main content

Advertisement

Log in

Genetic algorithm based simultaneous optimization of feature subsets and hidden Markov model parameters for discrimination between speech and non-speech events

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Feature subsets and hidden Markov model (HMM) parameters are the two major factors that affect the classification accuracy (CA) of the HMM-based classifier. This paper proposes a genetic algorithm based approach for simultaneously optimizing both feature subsets and HMM parameters with the aim to obtain the best HMM-based classifier. Experimental data extracted from three spontaneous speech corpora were used to evaluate the effectiveness of the proposed approach and the three other approaches (i.e. the approaches to single optimization of feature subsets, single optimization of HMM parameters, and no optimization of both feature subsets and HMM parameters) that were adopted in the previous work for discrimination between speech and non-speech events (e.g. filled pause, laughter, applause). The experimental results show that the proposed approach obtains CA of 91.05%, while the three other approaches obtain CA of 86.11%, 87.05%, and 83.16%, respectively. The results suggest that the proposed approach is superior to the previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41(1), 164–171.

    Article  MATH  MathSciNet  Google Scholar 

  • Cai, R., Lu, L., Zhang, H. J., & Cai, L. H. (2003). Highlight sound effects detection in audio stream. In IEEE international conference on multimedia and expo (pp. 37–40), Baltimore, MD, USA.

  • Cai, R., Lu, L., Hanjalic, A., Zhang, H. J., & Cai, L. H. (2006). A flexible framework for key audio effects detection and auditory context inference. IEEE Transactions on Audio, Speech and Language Processing, 14(3), 1026–1039.

    Article  Google Scholar 

  • Chan, T. M., Man, K. F., Tang, K. S., & Kwong, S. (2007). A jumping-genes paradigm for optimizing factory WLAN network. IEEE Transactions on Industrial Informatics, 3(1), 33–43.

    Article  Google Scholar 

  • Chau, C. W., Kwong, S., Diu, C. K., & Fahrner, W. R. (1997). Optimization of HMM by a genetic algorithm. In IEEE ICASSP, Munich, Germany (pp. 1727–1730), Munich, Germany.

  • Dorsy, R. E., & Mayer, W. J. (1995). Genetic algorithms for estimation problems with multiple optima, non-differentiability, and other irregular features. Journal of Business and Economic Statistics, 13(1), 53–56.

    Article  Google Scholar 

  • Jarina, R., & Olajec, J. (2007). Discriminative feature selection for applause sounds detection. In The eighth international workshop on image analysis for multimedia interactive services (WIAMIS) (pp. 13–16), Santorini, Greece.

  • Juang, B. H., & Rabiner, L. (1990). The segmental K-means algorithm for estimating parameters of hidden Markov models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38(9), 1639–1641.

    Article  MATH  Google Scholar 

  • Kwong, S., Chau, C. W., & Halang, W. A. (1996). Genetic algorithm for optimizing the nonlinear time alignment of automatic speech recognition systems. IEEE Transactions on Industrial Electronics, 43(5), 559–566.

    Article  Google Scholar 

  • Kwong, S., Chau, C. W., Man, K. F., & Tang, K. S. (2001). Optimization of HMM topology and its model parameters by genetic algorithms. Pattern Recognition, 34(2), 509–522.

    Article  MATH  Google Scholar 

  • Kwong, S., He, Q. H., Ku, K. W., Chan, T. M., Man, K. F., & Tang, K. S. (2002). A genetic classification error method for speech recognition. Signal Processing, 82(5), 737–748.

    Article  MATH  Google Scholar 

  • Li, Y. X., He, Q. H., & Li, T. (2008a). A detection method of lip-smack in spontaneous speech. In International conference on audio, language and image processing (pp. 292–297), Shanghai, China.

  • Li, Y. X., He, Q. H., & Li, T. (2008b). A novel detection method of filled pause in mandarin spontaneous speech. In The 7th IEEE international conference on computer and information science (pp. 217–222), Marriot Portland City Center, Portland, Oregon, USA.

  • Man, K. F., Tang, K. S., & Kwong, S. (1996). Genetic algorithm: concepts and applications. IEEE Transactions on Industrial Electronics, 45(5), 519–534.

    Article  Google Scholar 

  • Ogata, J., & Asano, F. (2006). Stream-based classification and segmentation of speech events in meeting recordings. In International workshop on multimedia content representation, classification and security (pp. 793–800), Istanbul, Turkey.

  • Olajec, J., Jarina, R., & Kuba, M. (2006). GA-based feature extraction for clapping sound detection. In The 8th seminar on neural network applications in electrical engineering (pp. 21–25), University of Belgrade, Serbia.

  • Petridis, V., Paterakis, E., & Kehagias, A. (1998). A hybrid neural-genetic multi-model parameter estimation algorithm. IEEE Transactions on Neural Networks, 9(5), 862–876.

    Article  Google Scholar 

  • Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286.

    Article  Google Scholar 

  • Rabiner, L., & Juang, B.-H. (1993). Fundamentals of speech recognition. Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Reyes-Gomez, M. J., & Ellis, D. P. W. (2003). Selection, parameter estimation, and discriminative training of hidden Markov models for general audio modeling. In IEEE international conference on multimedia and expo (pp. 73–76), Baltimore, MD, USA.

  • Schuller, B., Eyben, F., & Rigoll, G. (2008). Static and dynamic modeling for the recognition of non-verbal vocalisations in conversational speech. In Perception in multimodal dialogue systems (Vol. 5078, pp. 99–110). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Stouten, F., & Martens, J. P. (2003). A feature-based filled pause detection system for Dutch. In IEEE automatic speech recognition and understanding workshop (pp. 309–314), Virgen Islands, USA.

  • Tang, K. S., Man, K. F., Kwong, S., & He, Q. H. (1996). Genetic algorithms and their applications. IEEE Signal Processing Magazine, 13(6), 22–37.

    Article  Google Scholar 

  • Temko, A., Macho, D., & Nadeu, C. (2008). Fuzzy integral based information fusion for classification of highly confusable non-speech sounds. Pattern Recognition, 41(5), 1814–1823.

    Article  MATH  Google Scholar 

  • Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. IEEE Intelligent Systems Magazine, 13(2), 44–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Xiong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YX., Kwong, S., He, QH. et al. Genetic algorithm based simultaneous optimization of feature subsets and hidden Markov model parameters for discrimination between speech and non-speech events. Int J Speech Technol 13, 61–73 (2010). https://doi.org/10.1007/s10772-010-9070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-010-9070-4

Keywords

Navigation