Skip to main content

Advertisement

Log in

Filterbank optimization for robust ASR using GA and PSO

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Automatic speech recognition (ASR) systems follow a well established approach of pattern recognition, that is signal processing based feature extraction at front-end and likelihood evaluation of feature vectors at back-end. Mel-frequency cepstral coefficients (MFCCs) are the features widely used in state-of-the-art ASR systems, which are derived by logarithmic spectral energies of the speech signal using Mel-scale filterbank. In filterbank analysis of MFCC there is no consensus for the spacing and number of filters used in various noise conditions and applications. In this paper, we propose a novel approach to use particle swarm optimization (PSO) and genetic algorithm (GA) to optimize the parameters of MFCC filterbank such as the central and side frequencies. The experimental results show that the new front-end outperforms the conventional MFCC technique. All the investigations are conducted using two separate classifiers, HMM and MLP, for Hindi vowels recognition in typical field condition as well as in noisy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aggarwal, R. K., & Dave, M. (2011a). Performance evaluation of sequentially combined heterogeneous feature streams for Hindi speech recognition system. Telecommunication Systems Journal. doi:10.1007/s11235-011-9623-0. Special issue on signal processing applications in human computer interaction.

    Google Scholar 

  • Aggarwal, R. K., & Dave, M. (2011b). Acoustic modeling problem for automatic speech recognition system: conventional methods (Part I). International Journal of Speech Technology, 14(4), 297–308.

    Article  Google Scholar 

  • Aggarwal, R. K., & Dave, M. (2011c). Acoustic modeling problem for automatic speech recognition system: advances and refinements (Part II). International Journal of Speech Technology, 14(4), 309–320.

    Article  Google Scholar 

  • Benesty, J., Sondhi, M.M., & Huang, Y. (2008). Handbook of speech processing. Berlin: Springer.

    Book  Google Scholar 

  • Boll, S. F. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27, 113–120.

    Article  Google Scholar 

  • Burget, L., & Hermansky, H. (2001). Data driven design of filterbank for speech recognition. In Lecture notes in computer science: Vol. 2166. Text, speech and dialogue (pp. 299–304). Berlin: Springer.

    Chapter  Google Scholar 

  • Chau, C. W., Kwong, S., Diu, C. K., & Fahrner, W. R. (1997). Optimization of HMM by a genetic algorithm. In Proceedings of IEEE international conference on acoustics, speech, and signal processing (pp. 1727–1730).

    Google Scholar 

  • Chen, J., Benesty, J., Huang, Y., & Doclo, S. (2006). New insights into the noise reduction Wiener filter. IEEE Transactions on Audio, Speech, & Language Processing, 14(4), 1218–1234.

    Article  Google Scholar 

  • Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28, 357–366.

    Article  Google Scholar 

  • Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–56.

    Article  Google Scholar 

  • Gales, M., & Young, S. (1996). Robust continuous speech recognition using parallel model combination. IEEE Transactions on Speech and Audio Processing, 4(5), 352–359.

    Article  Google Scholar 

  • Hermansky, H. (1990). Perceptually predictive (PLP) analysis of speech. The Journal of the Acoustical Society of America, 87, 1738–1752.

    Article  Google Scholar 

  • Hermansky, H., & Morgan, N. (1994). RASTA processing of speech. IEEE Transactions on Speech and Audio Processing, 2(4), 578–589.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of international conference on neural networks (pp. 1942–1948). Piscataway: IEEE.

    Google Scholar 

  • Kennedy, J., Eberhart, R.C., & Shi, Y. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Koehler, J., Morgan, N., Hermansky, H., Hirsch, H. G., & Tong, G. (1994). Integrating RASTA-PLP into speech recognition. In Proceedings IEEE international conference on acoustics, speech and signal processing (Vol. 1, pp. 421–424).

    Google Scholar 

  • Kwong, S., Chau, C. W., & Halang, W. A. (1996). Genetic algorithm for optimizing the nonlinear time alignment of automatic speech recognition systems. IEEE Transactions on Industrial Electronics, 43(5), 559–566.

    Article  Google Scholar 

  • Kwong, S., Chau, C. W., Man, K. F., & Tang, K. S. (2001). Optimization of HMM topology and its model parameters by genetic algorithms. Pattern Recognition, 34(2), 509–522.

    Article  MATH  Google Scholar 

  • Kwong, S., He, Q. H., Ku, K. W., Chan, T. M., Man, K. F., & Tang, K. S. (2002). A genetic classification error method for speech recognition. Signal Processing, 82, 737–748.

    Article  MATH  Google Scholar 

  • Loizou, P. C., & Spanias, A. S. (1996). High-performance alphabet recognition. IEEE Transactions on Speech and Audio Processing, 4(6), 430–445.

    Article  Google Scholar 

  • Najkar, N., Razzazi, F., & Sameti, H. (2010). A novel approach to HMM-based speech recognition systems using particle swarm optimization. Mathematical and Computer Modelling, 52, 1910–1920.

    Article  MATH  Google Scholar 

  • Paliwal, K. K. (1987). A speech enhancement method based on Kalman filtering. In Proceedings IEEE ICASSP (pp. 177–180).

    Google Scholar 

  • Rabanal, P., Rodriguez, I., & Rubio, F. (2009). Applying river formation dynamics to solve NP-complete problems. In Studies in computational intelligence: Vol. 193. Nature-inspired algorithms for optimization (pp. 333–368). Springer, Berlin.

    Chapter  Google Scholar 

  • Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286.

    Article  Google Scholar 

  • Rao, K. S., & Yegnanarayana, B. (2007). Modeling durations of syllables using neural networks. Computer Speech and Language, 21, 282–295.

    Article  Google Scholar 

  • Rao, K. S. (2011). Role of neural network models for developing speech systems. Sadhana, 36(5), 783–836.

    Article  Google Scholar 

  • Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Proceedings of seventh annual conference on evolutionary programming (pp. 591–601).

    Chapter  Google Scholar 

  • Skowronski, M. D., & Harris, J. G. (2003). Improving the filterbank of a classic speech feature extraction algorithm. In Proceedings of the IEEE international symposium on circuits and systems (ISCAS’03), (Vol. 4, pp. 281–284).

    Google Scholar 

  • Skowronski, M. D., & Harris, J. G. (2004). Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition. The Journal of the Acoustical Society of America, 116(3), 1774–1780.

    Article  Google Scholar 

  • Valle, Y. D., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., & Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195.

    Article  Google Scholar 

  • Varga, A., & Steeneken, H. J. M. (1993). Assessment for automatic recognition: II. NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems. ESCA Journal of Speech Communication, 12(3), 247–251.

    Article  Google Scholar 

  • Welch, L. R. (2003). HMMs and the Baum-Welch algorithms. IEEE Information Theory Society Newsletter, 53(4), 10–13.

    MathSciNet  Google Scholar 

  • Zheng, F., Zhang, G., & Song, Z. (2001). Comparison of different implementations of MFCC. Journal of Computer Science and Technology, 16(6), 582–589.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Aggarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, R.K., Dave, M. Filterbank optimization for robust ASR using GA and PSO. Int J Speech Technol 15, 191–201 (2012). https://doi.org/10.1007/s10772-012-9133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-012-9133-9

Keywords

Navigation