Skip to main content
Log in

Speech enhancement with an adaptive Wiener filter

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive Wiener filtering method for speech enhancement. This method depends on the adaptation of the filter transfer function from sample to sample based on the speech signal statistics; the local mean and the local variance. It is implemented in the time domain rather than in the frequency domain to accommodate for the time-varying nature of the speech signals. The proposed method is compared to the traditional frequency-domain Wiener filtering, spectral subtraction and wavelet denoising methods using different speech quality metrics. The simulation results reveal the superiority of the proposed Wiener filtering method in the case of Additive White Gaussian Noise (AWGN) as well as colored noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Bahoura, M., & Rouat, J. (2001). Wavelet speech enhancement based on the teager energy operator. IEEE Signal Proc. Letters, 8(1).

  • Berouti, M., Schwartz, R., & Makhoul, J. (1979). Enhancement of speech corrupted by acoustic noise. In Proc. IEEE int. conf. acoust., speech signal processing (pp. 208–211).

    Google Scholar 

  • Boll, S. F. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-27, 113–120.

    Article  Google Scholar 

  • Boll, S. (1990). Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27, 113–120.

    Article  Google Scholar 

  • Deller, J. R., Hansen, J. H. L., & Proakis, J. G. (2000). Discrete-time processing of speech signals (2nd ed.). New York: IEEE Press.

    Google Scholar 

  • Ephriam, Y., & Van Trees, H. L. (1993). A signal subspace approach for speech enhancement. In Proc. international conference on acoustic, speech and signal processing, Detroit, MI, USA, May 1993 (Vol. II, pp. 355–358).

    Chapter  Google Scholar 

  • Ghanbari, Y., & Karami, M. (2004). Spectral subtraction in the wavelet domain for speech enhancement. International Journal of Software & Information Technology (IJSIT), 1, 26–30.

    Google Scholar 

  • Ghanbari, Y., Karami, M., & Amelifard, B. (2004). Improved multi band spectral subtraction method for speech enhancement. In Proc. 6th IASTED internat. conf. on signal image process, USA (pp. 225–230).

    Google Scholar 

  • Handel, P. (2007). Power spectral density error analysis of spectral subtraction type of speech enhancement method. EURASIP Journal On Advances in Signal Processing, 1–9.

  • Haykin, S. (1996). Adaptive filter theory. New York: Prentice-Hall. ISBN 0-13-322760-X.

    Google Scholar 

  • Johnstone, I. M., & Silverman, B. W. (1997). Wavelet threshold estimators for data with correlated noise. Journal of Royal Statistical Society, 59(2), 319–351.

    MATH  MathSciNet  Google Scholar 

  • Kusumoto, A., Arai, T., Kinshita, K., & Hodoshima, N. (2005). Modulation Enhancement of speech by a preprocessing algorithm for improving intelligibility in reverberant environments. Speech Communication, 45(2), 101–113.

    Article  Google Scholar 

  • Lim, J. S., & Oppenheim, A. V. (1978). All-pole modelling of degraded speech. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-26.

  • Lim, J. S., & Oppenheim, A. V. (1979). Enhancement and bandwidth compression of noisy speech. Proceedings of the IEEE, 12, 197–210.

    Google Scholar 

  • Manikandan, S. (2006). Speech Enhancement based on Wavelet De noising. Academic Open Internet journal ISSN 1311-4360, 17.

  • Quatieri, T. F. (2002). Discrete-time speech signal processing: principles and practice. New York: Prentice Hall.

    Google Scholar 

  • Shao, Y., & Chang, C. H. (2005). A versatile speech enhancement system based on perceptual wavelet denoising. In IEEE (pp. 864–867).

    Google Scholar 

  • Sheikhzadeh, H. (2001). An improved wavelet-based speech enhancement system. Eurospeech.

  • Vaseghi, S. V. (2000). Advanced digital signal processing and noise reduction (2nd ed.). Chichester: Wiley.

    Google Scholar 

  • Wu, C. Z., Tai Guo, M., Boxiong, S., & Li, Q. (2000). Studies on a speech signal testing method based on adaptive filtering feedback technology. Signal Processing Proceedings, 1, 543–546.

    Google Scholar 

  • Ying, J., Li, G., & Wang, Z. (2008). A novel approach to speech signal synthesis. In Audio, language and image processing, July 2008 (pp. 680–685).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fathi E. Abd El-samie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd El-Fattah, M.A., Dessouky, M.I., Abbas, A.M. et al. Speech enhancement with an adaptive Wiener filter. Int J Speech Technol 17, 53–64 (2014). https://doi.org/10.1007/s10772-013-9205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-013-9205-5

Keywords

Navigation