Skip to main content
Log in

Semantic role labeling for Arabic language using case-based reasoning approach

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Many natural language processing areas use semantic roles in order to improve the applications of the extracted information, the question answering and the machine translation, etc. In Arabic, the work of constructing the semantic role labeling system or the annotated corpus is extremely limited compared to their speaker’s number and to English language as well. In this paper, we present a supervised method for the semantic role labeling of Arabic sentences. Hence, we use the feedback capacity of the case-based reasoning to annotate new sentences from already annotated ones besides the use of the Arabic PropBank as a reference to the semantic labels. We test our method under a wide range corpus that contains 2332 attributes and 5291 arguments. Accordingly, an Arabic semantic role labeling system is tested, for the first time, in that corpus. As a result, our method shows the ability to annotate new sentences from the labeled sentences or the construction of the annotated corpus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://conll.cemantix.org/2012/introduction.html.

  2. https://catalog.ldc.upenn.edu/LDC2013T19.

  3. http://nlp.cs.swarthmore.edu/semeval/.

  4. http://conll.cemantix.org/2012/data.html.

  5. https://www.ldc.upenn.edu/.

  6. https://catalog.ldc.upenn.edu/LDC2013T19.

References

  • Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun, 7, 39–59.

    Google Scholar 

  • Armaghan, N. (2009) Contribution à un système de retour d’expérience basé sur le raisonnement à partir de cas conversationnel: Application à la gestion des pannes de machines industrielles. Thèse de doctorat Génie des systèmes industriels, Vandoeuvre-les-Nancy, France.

  • Baker, C. F., Fillmore, C. J., & Lowe, J. B. (1998). The Berkeley FrameNet Project. Paper presented at the Proceedings of the 17th international conference on Computational linguistics—Vol. 1, Montreal, Quebec, Canada. doi:10.3115/980451.980860.

  • Begum, S., Ahmed, M. U., Funk, P., Ning, X., & Folke, M. (2011). Case-based reasoning systems in the health sciences: A survey of recent trends and developments. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41, 421–434. doi:10.1109/TSMCC.2010.2071862.

    Article  Google Scholar 

  • Bonial, C., Hwang, J., Bonn, J., Conger, K., Babko-malaya, O., & Palmer, M. (2012). English PropBank Annotation Guidelines.

  • Campillo-Gimenez, B., Jouini, W., Bayat, S., & Cuggia, M. (2013). Improving case-based reasoning systems by combining K-nearest neighbour algorithm with logistic regression in the prediction of patients’ registration on the renal transplant waiting list. PLoS ONE, 8, e71991. doi:10.1371/journal.pone.0071991.

    Article  Google Scholar 

  • Collins, B. (1998). Example Based Machine Translation: Adaptation Guided Retrieval Approach. PhD Thesis, University of Dublin, Trinity College.

  • Cordierand, A., & Fuchs, B. (2005). Un assistant pour la conception et le développement des systèmes de RàPC. In S. Després (Ed.), Atelier Raisonnement à Partir de Cas (pp. 5–14). Nice: Plate-Forme AFIA 2005 - Atelier Raisonnement à Partir de Cas.

    Google Scholar 

  • Diab, M., Alkhalifa, M., ElKateb, S., Fellbaum, C., Mansouri, A., & Palmer, M. (2007a). SemEval-2007 Task 18: Arabic Semantic Labeling. In, Prague, 2007a. Workshop on Semantic Evaluations (SemEval).

  • Diab, M., & Marton, Y. (2014). Semantic processing of semitic languages. In I. Zitouni (Ed.), Natural language processing of semitic languages (pp. 129–159). Berlin: Springer Berlin Heidelberg. doi:10.1007/978-3-642-45358-8_4.

    Chapter  Google Scholar 

  • Diab, M., & Moschitti, A. (2007). Semantic parsing of modern standard Arabic. In: Recent advances in natural language processing (RANLP), Vol. 2007, Borovets: Association for Computational Linguistics (ACL).

  • Diab, M., Moschitti, A., & Pighin, D. (2007b). CUNIT: A semantic role labeling system for modern standard Arabic. Paper presented at the SemEval-2007 Workshop, co-located with ACL 2007.

  • Diab, M., Moschitti, A., & Pighin, D. (2008). Semantic role labeling systems for Arabic language using kernel methods. In: 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL 2008: HLT), Columbus, Ohio, USA, 2008.

  • Dufour-Lussier, V., Lieber, J., Nauer, E., & Toussaint, Y. (2010). Text adaptation using formal concept analysis. In I. Bichindaritz & S. Montani (Eds.), Case-based reasoning. research and development: 18th International Conference on Case-Based Reasoning, ICCBR 2010, Alessandria, Italy, July 19–22, 2010. Proceedings (pp. 96–110). Berlin: Springer Berlin Heidelberg. doi:10.1007/978-3-642-14274-1_9.

    Chapter  Google Scholar 

  • Guessoum, S., Laskri, M. T., & Lieber, J. (2014). RespiDiag: A case-based reasoning system for the diagnosis of chronic obstructive pulmonary disease. Expert Systems with Applications, 41, 267–273. doi:10.1016/j.eswa.2013.05.065.

    Article  Google Scholar 

  • Hechenbichler, K., & Schliep, K. (2004). Weighted k-Nearest-Neighbor Techniques and Ordinal Classification Vol. 399.

  • JianDe, W., ZhaoXiong, C., & HeYan, H. (2001). Intelligent case based machine translation system. In A. Gelbukh (Ed.), Computational linguistics and intelligent text processing: Second International Conference, CICLing 2001 Mexico City, Mexico, February 18–24, 2001 Proceedings (pp. 197–205). Berlin: Springer Berlin Heidelberg. doi:10.1007/3-540-44686-9_21.

    Chapter  Google Scholar 

  • Lamontagne, L., & Lapalme, G. (2004). Textual reuse for email response. In P. Funk & P. A. González Calero (Eds.), Advances in case-based reasoning: 7th European Conference, ECCBR 2004, Madrid, Spain, August 30—September 2, 2004. Proceedings (pp. 242–256). Berlin: Springer Berlin Heidelberg. doi:10.1007/978-3-540-28631-8_19.

    Chapter  Google Scholar 

  • Maamouri, M., Bies, A., Buckwalter, T., Mekki, W. (2004). The Penn Arabic Treebank: Building a Large-Scale Annotated Arabic Corpus. In: NEMLAR Conference on Arabic Language Resources and Tools, 2004.

  • Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of English: The penn treebank. Computational Linguistics, 19, 313–330.

    Google Scholar 

  • Mathieu-Dupas, E. (2010). Algorithme des k plus proches voisins pondérés et application en diagnostic. In: 42èmes Journées de Statistique, Marseille, France, France, 2010.

  • Meguehout, H., Bouhadada, T., & Laskri, T. (2013). Un raisonnement à partir de cas pour la traduction automatique arabe-français basée sur la sémantique. Paper presented at the CEC-TAL’2013, Montréal, Canada.

  • Mishra, V., & Mishra, R. B. (2010). Approach of English to Sanskrit machine translation based on case based reasoning, artificial neural networks and translation rules. International Journal of Knowledge Engineering and Soft Data Paradigms, 2, 328–348. doi:10.1504/ijkesdp.2010.037494.

    Article  Google Scholar 

  • Mohamed, M., Bies, A., Kulick, S., Krouna, S., Gaddeche, F., & Zaghouani, W. (2010). Arabic Treebank: Part 3 v 3.2 LDC2010T08. Philadelphia: Linguistic Data Consortium.

    Google Scholar 

  • Morante, R., Daelemans, W., & Asch, V. V. (2008). A combined memory-based semantic role labeler of English. Paper presented at the Proceedings of the Twelfth Conference on Computational Natural Language Learning, Manchester, United Kingdom.

  • Mousser, J. (2010). A Large Coverage Verb Taxonomy for Arabic. Paper presented at the LREC.

  • Palmer, M., Babko-Malaya, O., Bies, A., Diab, M., Maamouri, M., Mansouri, A., & Zaghouani, W. (2008). A Pilot Arabic Propbank. Marrakech: European Language Resources Association (ELRA).

    Google Scholar 

  • Palmer, M., Gildea, D., & Kingsbury, P. (2005). The proposition bank: An annotated corpus of semantic roles. Computational Linguistics, 31, 71–106. doi:10.1162/0891201053630264.

    Article  Google Scholar 

  • Palmer, M., Gildea, D., & Xue, N. (2011). Semantic role labeling. San Rafael: Morgan & Claypool. doi:10.2200/S00239ED1V01Y200912HLT006.

    Google Scholar 

  • Pradhan, S., Moschitti, A., Xue, N., Uryupina, O., & Zhan, Y. (2012). CoNLL-2012 Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes. Jju Island.

  • Punyakanok, V., Roth, D., & Yih, W. -T. (2008). The importance of syntactic parsing and inference in semantic role labeling. Computational Linguistics, 34, 257–287 doi:10.1162/coli.2008.34.2.257.

    Article  Google Scholar 

  • Ralph, W. et al. (2012). OntoNotes Release 5.0 with OntoNotes DB Tool v0.999 beta.

  • Riesbeck, C. K., & Schank, R. C. (1989). Inside case-based reasoning. New Jersey: L. Erlbaum Associates Inc.

    Google Scholar 

  • Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and people. cambridge: Cambridge University Press.

    Google Scholar 

  • Schuler, K. K. (2005). Verbnet: A broad-coverage, comprehensive verb lexicon. Philadelphia: University of Pennsylvania.

    Google Scholar 

  • Schuler, K. K. (2006). VerbNet: A broad-coverage, comprehensive verb Lexicon. Philadelphia: University of Pennsylvania.

    Google Scholar 

  • Shahnawaz, & Mishra, R. B. (2015). An English to Urdu translation model based on CBR, ANN and translation rules. International Journal of Advanced Intelligence Paradigms, 7, 1–23 doi:10.1504/ijaip.2015.070335.

    Article  Google Scholar 

  • Surdeanu, M., Morante, R., & Màrquez, L. (2008). Analysis of joint inference strategies for the semantic role labeling of spanish and catalan. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing: 9th International Conference, CICLing 2008, Haifa, Israel, February 17–23, 2008. Proceedings (pp. 206–218). Berlin: Springer Berlin Heidelberg. doi:10.1007/978-3-540-78135-6_18.

    Chapter  Google Scholar 

  • Zaghouani, W. (2015). Le développement de corpus annotés pour la langue arabe. PhD Thesis, University Paris Ouest Nanterre la Défense.

  • Zaghouani, W., Diab, M., Mansouri, A., Pradhan, S., & Palmer, M. (2010). The revised Arabic PropBank. Paper presented at the Proceedings of the Fourth Linguistic Annotation Workshop, Uppsala, Sweden.

  • Zaghouani, W., Hawwari, A., & Diab, M. A. (2012). Pilot PropBank Annotation for Quranic Arabic. In the NAACL-HLT 2012 Workshop on Computational Linguistics for Literature (pp. 78–83). Canada: Association for Computational Linguistics.

  • Zwarts, S., Nijholt, A., Akker DiHJAod, & Poel, M. (2004). CBR in Dependency-based Machine Translation. Paper presented at the Proceedings of Konvens 2004, Vienna, Austria.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Meguehout.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meguehout, H., Bouhadada, T. & Laskri, M.T. Semantic role labeling for Arabic language using case-based reasoning approach. Int J Speech Technol 20, 363–372 (2017). https://doi.org/10.1007/s10772-017-9412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-017-9412-6

Keywords

Navigation