Skip to main content
Log in

On the application of quantum clustering on speech data

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In this work, Quantum clustering (QC) algorithm is applied to a labeled dataset of Arabic vowels. The accuracy and processing time are, then, compared with nonhierarchical kernel approaches for unsupervised clustering; namely, k-means, self-organizing map and fuzzy c-means. The choice of speech data is according to large database statistics which reveal that vowels class represents about 60–70% of Arabic speech whereas the remaining percentage is distributed among other sounds. The analysis features, in this work, are the mel-frequency cepstarl coefficients. The results show that all algorithms are competitive from accuracy point of view while QC still guarantees the solution stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aïmeur, E., Brassard, G., & Gambs, S. (2013). Quantum speed-up for unsupervised learning. Machine Learning, 90(2), 261–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Alotaibi, Y. A., & Husain, A., (2009). Formant Based Analysis of Spoken Arabic Vowels, in Biometric ID Management and Multimodal Communication: Joint COST 2101 and 2102 International Conference, BioID{_}MultiComm 2009, Madrid, Spain, September 16–18, 2009. Proceedings, J. Fierrez, J. Ortega-Garcia, A. Esposito, A. Drygajlo, and M. Faundez-Zanuy, Eds. Berlin: Springer Berlin Heidelberg, pp. 162–169.

  • Benesty, J., Sondhi, M. M., Huang, Y., & Greenberg, S. (2009). Springer handbook of speech processing., Vol. 126, 4.

  • Demir, G. K., (2005). Clustering Within Quantum Mechanical Framework,” in Pattern Recognition and Machine Intelligence: First International Conference, PReMI 2005, Kolkata, India, December 20–22, 2005. Proceedings, S. K. Pal, S. Bandyopadhyay, and S. Biswas, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 182–187.

  • Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. Hoboken, Wiley, p. 680.

    MATH  Google Scholar 

  • ELRA, (2006). ELRA-S0192, GlobalPhone Arabic.

  • Filippone, M., Camastra, F., Masulli, F., & Rovetta, S. (2008). A survey of kernel and spectral methods for clustering. Pattern Recognition. 41(1), 176–190.

    Article  MATH  Google Scholar 

  • Gan, G., Ma, C., & Wu, J. (2007). Data clustering: theory, algorithms, and applications, Vol. 20.

  • Horn, D., & Gottlieb, A. (2001). The method of quantum clustering. Nips,1, 769–776.

  • Horn, D., & Gottlieb, A. (2001). Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Physical Review Letters, 88(1), 18702.

    Article  Google Scholar 

  • Jiang, T., Wu, Z., Jia, J., & Cai, L. (2012). Perceptual clustering based unit selection optimization for concatenative text-to-speech synthesis,” in 2012 8th International Symposium on Chinese Spoken Language Processing, pp. 64–68.

  • Kinnunen, T., Sidoroff, I., Tuononen, M., & Fränti, P. (2011). Comparison of clustering methods: a case study of text-independent speaker modeling. Pattern Recognition Letters, 32(13), 1604–1617.

    Article  Google Scholar 

  • Li, Y., Wang, Y., Wang, Y., Jiao, L., & Liu, Y. (2016). Quantum clustering using kernel entropy component analysis. Neurocomputing, 202, 36–48.

    Article  Google Scholar 

  • MATLAB R2009a version 7.8.0.347. Mathworks.

  • Mingoti, S. A., & Lima, J. O. (2006). Comparing {SOM} neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms.” European Journal of Operational Research, 174(3), 1742–1759.

    Article  MATH  Google Scholar 

  • Naito, M., Deng, L., & Sagisaka, Y. (2002). Speaker clustering for speech recognition using vocal tract parameters. Speech Communication, 36(3–4), 305–315.

    Article  MATH  Google Scholar 

  • Nasios, N., & Bors, A. G. (2007). Kernel-based classification using quantum mechanics. Pattern Recognition, 40(3), 875–889.

    Article  MATH  Google Scholar 

  • Neel, J. (2005). Cluster analysis methods for speech recognition. Cent. Speech Technol., no. February.

  • QC Toobox. http://www.tech.plym.ac.uk/spmc/links/classification/classification_matlab.html.

  • Tak, G. K., & Bhargava, V. (2010). Clustering Approach in speech phoneme recognition based on statistical analysis,” in Recent Trends in Network Security and Applications: Third International Conference, CNSA 2010, Chennai, India, July 23–25, 2010. Proceedings, N. Meghanathan, S. Boumerdassi, N. Chaki, and D. Nagamalai, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,, pp. 483–489.

  • Tsai, W.-H., Cheng, S.-S., Chao, Y.-H., & Wang, H.-M. (2005). Clustering speech utterances by speaker using eigenvoice-motivated vector space models,” in Proceedings. (ICASSP’05). IEEE international conference on acoustics, speech, and processing, Signal, 2005, vol. 1, pp. 725–728.

  • Yao, Z., Peng, W., Gao-yun, C., Dong-Dong, C., Rui, D., & Yan, Z. (2008). Quantum clustering algorithm based on exponent measuring distance,” in 2008 IEEE international symposium on knowledge acquisition and modeling workshop, pp. 436–439.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hesham Farouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farouk, M.H. On the application of quantum clustering on speech data. Int J Speech Technol 20, 891–896 (2017). https://doi.org/10.1007/s10772-017-9458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-017-9458-5

Keywords