Abstract
This paper is concerned with reflectarray antenna design with multiple unit cells in order to enhance the gain at the design frequency, while keeping an acceptable bandwidth to work for 5-G mobile base station applications. The design is based on five unit cells. The design begins with an investigation of the phase responses of all unit cells. It is required to choose a unit cell that can span 360° with linear characteristics. Unfortunately, none of the unit cells has perfectly linear phase characteristics. Each of them has a limited linear phase region. The proposed reflectarray design method selects the most linear region from each phase curve for selecting the appropriate unit cell with the appropriate size for each required phase using a phase gradient approach. With this approach, piece-wise linear phase characteristics are adopted for the design of the reflectarray to enhance the gain at the design frequency.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
For CST (Computer Simulation Technology) Documentation, see http://www.cst.com.
References
Alvarez, J., Arrebola, M., Ayestaran, R. G., & Las-Heras, F. (2012). Systematic framework for reflectarray synthesis based on phase optimization. International Journal of Antennas and Propagation. https://doi.org/10.1155/2012/474073.
Chen, X., Chen, Q., Feng, P., & Huang, K. (2016). Efficient design of the microstrip reflectarray antenna by optimizing the reflection phase curve. International Journal of Antennas and Propagation. https://doi.org/10.1155/2016/8764967.
Chou, H.-T., Liu, Y.-X., Dong, X.-Y., You, B.-Q., & Kuo, L.-R. (2015). Design of reflectarray antennas to achieve an optimum near-field radiation for RFID applications via the implementation of SDM procedure. Radio Science. https://doi.org/10.1002/2014RS005593.
Dahri, M. H., Jamaluddin, M. H., Abbasi, M. I., & Kamarudin, M. R. (2017). A review of wideband reflectarray antennas for 5G communication systems. IEEE Access, 5, 17803–17815.
Daniel, R., Prado, M., Arrebola, M. R., Pino, & Las-Heras, F. (2017). Improved reflectarray phase-only synthesis using the generalized intersection approach with dielectric frame and first principle of equivalence. International Journal of Antennas and Propagation. https://doi.org/10.1155/2017/3829390.
Elsharkawy, R., Sebak, A.-R., Hindy, M., Haraz, O. M., Saleeb, A., & El-Rabaie, E. M. (2015a). Polarization insensitive Ka-band reflectarray antenna. In The proceedings of the AP-S, pp. 2483–2484.
Elsharkawy, R., Sebak, A.-R., Hindy, M., Haraz, O. M., Saleeb, A., & El-Rabaie, E. M. (2015b). Single layer polarization independent reflectarray antenna for future 5-G cellular applications. In Proceedings of International Conference on Information and Communication Technology Research, pp. 9–12
Elsharkawy, R. R., Hindy, M., Saleeb, A. A. & El-Rabaie, E. M. (2017). A Reflectarray with octagonal unit cells for 5-G applications. Wireless Personal Communication, 97(2), 2999–3016.
Guha, D. & Antar, Y. (2011). Microstrip and printed antennas new trends, techniques and applications. Hoboken: Wiley.
Hong, W., Jiang, Z. H., Yu, C., Zhou, J., Chen, P., Yu, Z., et al. (2017). Multibeam antenna technologies for 5G wireless communications. IEEE Transactions on Antennas and Propagation, 65(12), 6231–6249.
Huang, J., & Encinar, J. A. (2008). Reflectarray antennas. Hoboken: Wiley.
Kurup, D. G., Himdi, M., & Rydberg, A. (2003). Design of an unequally spaced reflectarray. IEEE Antennas and Wireless Propagation Letters, 2, 33–35.
Nayeri, P., Yang, F., & Elsherbeni, A. Z. (2012). Design and experiment of a single-feed quad-beam reflectarray antenna. IEEE Transactions on Antennas and Propagations, 60(2), 1166–1171.
Nayeri, P., Yang, F., & Elsherbeni, A. Z. (2013). Design of single-feed reflectarray antennas with asymmetric multiple beams using the particle swarm optimization method. IEEE Transactions on Antennas and Propagations, 61(9), 4598–4605.
Zhang, S. (2017). Three-dimensional printed millimetre wave dielectric resonator reflectarray. IET Microwaves, Antennas & Propagation, 11(14), 2005–2009.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Elsharkawy, R., Hindy, M., Sebak, AR. et al. Gain optimization for millimeter wave reflectarray antennas based on a phase gradient approach. Int J Speech Technol 21, 555–562 (2018). https://doi.org/10.1007/s10772-018-9507-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10772-018-9507-8