Skip to main content

Advertisement

Log in

Predictive analytics using cross media features in precision farming

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

The scope of sensor networks and Internet of Things spanning rapidly to diversified domains but not limited to sports, health, and business trading. In recent past, the sensors and MEMS integrated Internet of Things are playing crucial role in diversified farming strategies like dairy farming, animal farming, and agriculture farming. The usage of sensors and IoT technologies in farming are coined in contemporary literature as smart farming or precision farming. At its early state of the smart farming, the practices applying in agriculture farming are limited to collect the data related to the context of the farming such as soil state, weather state, weed state, crop quality, and seed quality. These collections are to help the farmers, scientists to conclude the positive and negative factors of crop to initiate the required agricultural practices. However, the impact of these practices taken by the agriculturists depends on their experience. In this regard, the computer aided predictive analytics by machine learning and big data strategies are having inevitable scope. The emphasis of this manuscript is reviewing the existing set of computer aided methods of predictive analytics defined in related to precision farming, gaining insights into how distinct set of precision farming inputs are supporting the predictive analytics to help farming communities towards improvisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahmed, S. (2014). FDI and precision agriculture in India. In Foreign direct investment, trade and economic growth (pp. 97–116). New Delhi: Routledge.

  • Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M., & Notarnicola, C. (2015). Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sensing,7(12), 16398–16421.

    Google Scholar 

  • Antle, J. M., Jones, J. W., & Rosenzweig, C. (2017). Next generation agricultural system models and knowledge products: Synthesis and strategy. Agricultural Systems,155, 179–185.

    Google Scholar 

  • Antonopoulou, E., Karetsos, S. T., Maliappis, M., & Sideridis, A. B. (2010). Web and mobile technologies in a prototype DSS for major field crops. Computers and Electronics in Agriculture,70(2), 292–301.

    Google Scholar 

  • Athmaja, S., Hanumanthappa, M, & Kavitha, V. (2017). A survey of machine learning algorithms for big data analytics. In 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS) (pp. 1–4). IEEE.

  • Bendre, M. R., & Thool, V. R. (2016). Analytics, challenges and applications in big data environment: A survey. Journal of Management Analytics,3(3), 206–239.

    Google Scholar 

  • Bendre, M. R., Thool, R. C., & Thool, V. R. (2015). Big data in precision agriculture: Weather forecasting for future farming. In 2015 1st International Conference on Next Generation Computing Technologies (NGCT) (pp. 744–750). IEEE.

  • Budati, A. K., & Polipalli, T. R. (2019). Performance analysis of HFDI computing algorithm in intelligent networks. International Journal of Computers and Applications,41(4), 255–261.

    Google Scholar 

  • Budati, A. K., & Valiveti, H. (2019). Identify the user presence by GLRT and NP detection criteria in cognitive radio spectrum sensing. International Journal of Communication Systems. https://doi.org/10.1002/dac.4142.

    Article  Google Scholar 

  • Carberry, P. S., Hochman, Z., McCown, R. L., Dalgliesh, N. P., Foale, M. A., Poulton, P. L., et al. (2002). The FARMSCAPE approach to decision support: Farmers’, advisers’, researchers’ monitoring, simulation, communication and performance evaluation. Agricultural Systems,74(1), 141–177.

    Google Scholar 

  • Chandel, N. S., Agrawal, K. N., Tripathi, H., & Garg, S. K. (2014). Development of yield maps in wheat using yield monitor. Bhartiya Krishi Anusandhan Patrika,29(3), 111–115.

    Google Scholar 

  • Channe, H., Kothari, S., & Kadam, D. (2015). Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis. International Journal of Computer Technology and Applications,6(3), 374–382.

    Google Scholar 

  • Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy,40(1), 79–96.

    Google Scholar 

  • Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics,10(4), 2233–2243.

    Google Scholar 

  • Dixit, J., Dixit, A. K., Lohan, S. K., & Kumar, D. (2014). Importance, concept and approaches for precision farming in India. Precision farming: A new approach (pp. 12–35). Delhi: Daya Publishing House.

    Google Scholar 

  • Dutta, R., Li, C., Smith, D., Das, A., & Aryal, J. (2015). Big data architecture for environmental analytics. In international symposium on environmental software systems, (pp. 578–588). Springer, Cham.

  • Emadi, M., Baghernejad, M., & Maftoun, M. (2008). Assessment of Some Soil Properties by Spatial Variability in Saline and Sodic Soils in Arsanjan Plain, Southern Iran. Pakistan Journal of Biological Sciences: PJBS,11(2), 238–243.

    Google Scholar 

  • Farid, H. U., Bakhsh, A., Ahmad, N., & Ahmad, A. (2013). Evaluation of management zones for site-specific application of crop inputs. Pakistan Journal of Life and Social Sciences (Pakistan),11, 29–35.

    Google Scholar 

  • Gope, H. L., Das, P. K., Islam, M. J., & Seddiqui, M. H. (2014). Medical document classification from OHSUMED dataset. IJCSN International Journal of Computer Science and Network,3(4), 215–219.

    Google Scholar 

  • Huang, Y., Chen, Z. X., Tao, Y. U., Huang, X. Z., & Gu, X. F. (2018). Agricultural remote sensing big data: Management and applications. Journal of Integrative Agriculture,17(9), 1915–1931.

    Google Scholar 

  • Ip, R. H., Ang, L. M., Seng, K. P., Broster, J. C., & Pratley, J. E. (2018). Big data and machine learning for crop protection. Computers and Electronics in Agriculture,151, 376–383.

    Google Scholar 

  • Jayashree, L. S., Palakkal, N., Papageorgiou, E. I., & Papageorgiou, K. (2015). Application of fuzzy cognitive maps in precision agriculture: a case study on coconut yield management of southern India’s Malabar region. Neural Computing and Applications,26(8), 1963–1978.

    Google Scholar 

  • Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., et al. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems,155, 269–288.

    Google Scholar 

  • Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture,143, 23–37.

    Google Scholar 

  • Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in Agriculture,147, 70–90.

    Google Scholar 

  • Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. Hoboken: Wiley.

    Google Scholar 

  • Kempenaar, C., Lokhorst, C., Bleumer, E. J. B., Veerkamp, R. F., Been, T., van Evert, F. K., et al. (2016). Big Data analysis for smart farming: Results of TO2 project in theme food security. Wageningen: Wageningen University & Research.

    Google Scholar 

  • Kumar, B. A., & Rao, P. T. (2017). MDI-SS: matched filter detection with inverse covariance matrix-based spectrum sensing in cognitive radio. International Journal of Internet Technology and Secured Transactions,7(4), 353–363.

    Google Scholar 

  • Kumar, G., & Chinara, S. (2015). Development of energy efficient wireless sensor networks protocol for precision agriculture. Journal of Basic and Applied Engineering Research,2, 360–364.

    Google Scholar 

  • Kumar, H., & Menakadevi, T. (2017). A review on big data analytics in the field of agriculture. International Journal of Latest Transactions in Engineering and Science.,1(4), 1–10.

    Google Scholar 

  • Kushwaha, M., & Raghuveer, V. R. (2017). Survey of impact of technology on effective implementation of precision farming in India. International Journal on Recent and Innovation Trends in Computing and Communication,5(6), 1300–1310.

    Google Scholar 

  • Lokers, R., Knapen, R., Janssen, S., van Randen, Y., & Jansen, J. (2016). Analysis of Big Data technologies for use in agro-environmental science. Environmental Modelling & Software,84, 494–504.

    Google Scholar 

  • Mahmud, M. S. A., Buyamin, S., Mokji, M. M., & Abidin, M. Z. (2018). Internet of things based smart environmental monitoring for mushroom cultivation. Indonesian Journal of Electrical Engineering and Computer Science,10(3), 847–852.

    Google Scholar 

  • Mandal, S. K., & Maity, A. (2013). Precision farming for small agricultural farm: Indian scenario. American Journal of Experimental Agriculture,3(1), 200.

    Google Scholar 

  • Mohammadi, M., Al-Fuqaha, A., Sorour, S., & Guizani, M. (2018). Deep learning for IoT big data and streaming analytics: A survey. IEEE Communications Surveys & Tutorials,20, 2923–2960.

    Google Scholar 

  • Mondal, P., & Basu, M. (2009). Adoption of precision agriculture technologies in India and in some developing countries: Scope, present status and strategies. Progress in Natural Science,19(6), 659–666.

    Google Scholar 

  • Mondal, P., Basu, M., Bhadoria, P. B. S., Emam, A. A., Salih, M. H., & Adegbite, A. A. (2011). Critical review of precision agriculture technologies and its scope of adoption in India. American Journal of Experimental Agriculture,1(3), 49–68.

    Google Scholar 

  • Morota, G., Ventura, R. V., Silva, F. F., Koyama, M., & Fernando, S. C. (2018). Big Data analytics and precision animal agriculture symposium: Machine learning and data mining advance predictive big data analysis in precision animal agriculture. Journal of Animal Science,96(4), 1540–1550.

    Google Scholar 

  • Ojha, T., Misra, S., & Raghuwanshi, N. S. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture,118, 66–84.

    Google Scholar 

  • Paraforos, D. S., Vassiliadis, V., Kortenbruck, D., Stamkopoulos, K., Ziogas, V., Sapounas, A. A., et al. (2016). A farm management information system using future internet technologies. IFAC-Papers OnLine,49, 324–329.

    Google Scholar 

  • Patil, V. C., Nadagouda, B. T., & Al-Gaadi, K. A. (2013). Spatial variability and precision nutrient management in sugarcane. Journal of the Indian Society of Remote Sensing,41(1), 183–189.

    Google Scholar 

  • Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Dalla Corte, V. F., & de Vargas Mores, G. (2018). Scientific development of smart farming technologies and their application in Brazil. Information Processing in Agriculture,5, 21–32.

    Google Scholar 

  • Qiu, W., Dong, L., Wang, F., & Yan, H. (2014). Design of intelligentgreenhouse environment monitoring system based on ZigBee and embedded technology. In 2014 IEEE international conference on consumer electronics-China (pp. 1–3). IEEE.

  • Reddy, I. S., Rao, D. N., Babu, A. N., Ratnam, M. V., Kishore, P., & Rao, S. V. B. (2005). Studies on atmospheric gravity wave activity in the troposphere and lower stratosphere over a tropical station at Gadanki. Annales Geophysicae,23(10), 3237–3260.

    Google Scholar 

  • Sankpal, A., & Warhade, K. K. (2015). Review of optoelectronic detection methods for the analysis of soil nutrients. International Journal of Advanced Computing and Electronics Technology (IJACET),2(2), 26–31.

    Google Scholar 

  • Sharma, D., Bhondekar, A. P., Ojha, A., Shukla, A. K., & Ghanshyam, C. (2016). A technical assessment of IOT for Indian agriculture sector. In: 47th Mid-Term Symposium on Modern Information and Communication Technologies for Digital India. Chandigarh.

  • Shivanna, A. M., & Nagendrappa, G. (2014). Chemical analysis of soil samples to evaluate the soil fertility status of selected command areas of three tanks in Tiptur Taluk of Karnataka, India. Crops,6, 7.

    Google Scholar 

  • Shu, H. (2016). Big data analytics: Six techniques. Geo-spatial Information Science,19(2), 119–128.

    MathSciNet  Google Scholar 

  • Singh, N. P. (2017). Application of data warehouse and big data technology in agriculture in India. In proceedings of VII seventh international conference on agricultural statistics (pp. 24–26), Rome, October.

  • Soman, S., Byju, G., & Bharathan, R. (2013). GIS based decision support system for precision farming of cassava in India. Acta BiologicaIndica,2(2), 394–399.

    Google Scholar 

  • Takeshima, H., & Joshi, P. K. (2019). Protected agriculture, precision agriculture, and vertical farming: Brief reviews of issues in the literature focusing on the developing region in Asia. Washington: International Food Policy Research Institute.

    Google Scholar 

  • Tiwari, A., & Jaga, P. K. (2012). Precision farming in India—A review. Outlook on Agriculture,41(2), 139–143.

    Google Scholar 

  • Vinod, P. G. (2017). Development of topographic position index based on Jenness algorithm for precision agriculture at Kerala, India. Spatial Information Research,25(3), 381–388.

    Google Scholar 

  • Wang, S. W., Feng, J., Liu, G., & Zhang, T. J. (2013). Multi-nesting spatial scales of soil heavy metals in farmland. NongyeJixieXuebao = Transactions of the Chinese Society for Agricultural Machinery,44(6), 128–135.

    Google Scholar 

  • White, B. J., Amrine, D. E., & Larson, R. L. (2018). Big Data analytics and precision animal agriculture symposium: Data to decisions. Journal of Animal Science,96(4), 1531–1539.

    Google Scholar 

  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming—A review. Agricultural Systems,153, 69–80.

    Google Scholar 

  • Yadav, V., & Yadav, P. (2014). Precision farming: A sustainable approach for organic horticulture production. Indian Horticulture Journal,4(1), 72–79.

    Google Scholar 

  • Yang, X.-l., Zhu, B., & Li, Y.-l. (2013). Spatial and temporal patterns of soil nitrogen distribution under different land uses in a watershed in the hilly area of purple soil, China. Journal of Mountain science,10(3), 410–417.

    Google Scholar 

  • Yin, Z., Lei, T. W., & Dong, Y. Q. (2013). Design and experiment of near infrared sensor for soil moisture measurement. NongyeJixieXuebao = Transactions of the Chinese Society for Agricultural Machinery,44(7), 72–73.

    Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculturea worldwide overview. Computers and Electronics in Agriculture,36(2–3), 113–132.

    Google Scholar 

  • Zhang, Q. (2015). Precision agriculture technology for crop farming. Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Rama Rao Kolipaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolipaka, V.R.R. Predictive analytics using cross media features in precision farming. Int J Speech Technol 23, 57–69 (2020). https://doi.org/10.1007/s10772-020-09669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-020-09669-z

Keywords

Navigation