Skip to main content
Log in

Natural Language Processing Based Sentimental Analysis of Hindi (SAH) Script an Optimization Approach

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Sentimental analysis is one of the most common applications of Natural Language Processing (NLP). Sentiment analysis, the term itself refers to identify the emotions and opinions of people through written text. It is concerned with information extraction from any text based on the polarity in social behavior whether it may be positive, negative or neutral. This paper presents a practical dynamic approach on to find the polarity of any sentence and analyse the opinion of the particular sentence. The proposed Sentimental Analysis of Hindi (SAH) script have adopted two different classifier Naïve Bayes Classifier and Decision Tree Classifier is used for the text extraction. The positive, neutral and negative result validation shows a comparative result of sentimental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alami Merrouni, Z., Frikh, B., & Ouhbi, B. (2019). Toward contextual information retrieval: A review and trends. Procedia Computer Science, 148, 191–200.

    Article  Google Scholar 

  • Ashok Kumar, S., & Chandramohan, D. (2018). Fault test analysis in transmission lines throughout interfering synchrophasor signals. Elsevier- ICT Express. https://doi.org/10.1016/j.icte.2018.03.003.

    Article  Google Scholar 

  • Atoum, I. (2020). A novel framework for measuring software quality-in-use based on semantic similarity and sentiment analysis of software reviews. Journal of King Saud University: Computer and Information Sciences, 32(1), 113–125.

    Google Scholar 

  • Cabot, C., Darmoni, S., & Soualmia, L. F. (2019). Cimind: A phonetic-based tool for multilingual named entity recognition in biomedical texts. Journal of Biomedical Informatics, 94, 103176.

    Article  Google Scholar 

  • Chandramohan, D., Manimaran, A., Reddy, R., & Tripathi, D. (2019). Fog enabled secure and privacy obfuscation for IoT services. Journal of Advance Research in Dynamical & Control Systems., 11(8), 1604–1610.

    Google Scholar 

  • Chandramohan, D., Rajaguru, D., Vengattaram, T., & Dhavachelvan, P. (2018). A coordinator-specific privacy-preserving model for e-health monitoring using artificial bee colony approach. Hoboken: Wiley. https://doi.org/10.1002/spy2.32.

    Book  Google Scholar 

  • Chandramohan, D., Sathian, D., Rajaguru, D., Vengattaraman, T., & Dhavachelvan, P. (2015). A multi-agent approach: To preserve user information privacy for a pervasive & ubiquitous environment. Egyptian Informatics Journal (Elsevier), 16, 151–166. https://doi.org/10.1016/j.eij.2015.02.002.

    Article  Google Scholar 

  • Chandramohan, D., Vengattaraman, T., & Dhavachelvan, P. (2016). A new privacy preserving technique for cloud service user endorsement using multi-agents. Elsevier-Journal of King Saud University-Computer and Information Sciences, 28(1), 37–54. https://doi.org/10.1016/j.jksuci.2014.06.018.

    Article  Google Scholar 

  • Estrada, M. C. B., Cabada, R. Z., Bustillos, R. O., & Graff, M. (2020). Opinion mining and emotion recognition applied to learning environments. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113265.

    Article  Google Scholar 

  • Gan, C., Wang, L., Zhang, Z., & Wang, Z. (2020). Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis. Knowledge-Based Systems, 188, 104827. https://doi.org/10.1016/j.knosys.2019.06.035.

    Article  Google Scholar 

  • Hassonah, M. A., Al-Sayyed, R., Rodan, A., et al. (2019). An efficient hybrid filter and evolutionary wrapper approach for sentiment analysis of various topics on Twitter. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2019.105353.

    Article  Google Scholar 

  • Jha, V., Savitha, R., Deepa Shenoy, P., Venugopal, K. R., & Sangaiah, A. K. (2018). A novel sentiment aware dictionary for multi-domain sentiment classification. Computers & Electrical Engineering, 69, 585–597.

    Article  Google Scholar 

  • Kishore, N. M. S., Jayakumar, S. K. V. (2011). Web service suitability assessment for cloud computing. In Wyld, D. C. (Ed.), Trends in network and communications LNCS NeCoM/WeST/WiMoN 2011, CCIS 197, 2011 (pp. 622–632). Berlin:Springer.

    Google Scholar 

  • Li, W., Qi, F., Tang, M., & Yu, Z. (2020). Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification. Neurocomputing. https://doi.org/10.1016/j.neucom.2020.01.006.

    Article  Google Scholar 

  • Manimaran, A., Chandramohan, D., Shrinivas, S. G., & Arulkumar, N. (2020). A comprehensive novel model for network speech anomaly detection system using deep learning approach. International Journal of Speech Technology. https://doi.org/10.1007/s10772-020-09693-z.

    Article  Google Scholar 

  • Mekki, A., Zribi, I., Ellouze, M., & Hadrich Belguith, L. (2018). Critical description of TA linguistic resources. Procedia Computer Science, 142, 230–237.

    Article  Google Scholar 

  • Mowlaei, M. E., Abadeh, M. S., & Keshavarz, H. (2020). Aspect-based sentiment analysis using adaptive aspect-based lexicons. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113234.

    Article  Google Scholar 

  • Ruz, G. A., Henríquez, P. A., & Mascareño, A. (2020). Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2020.01.005.

    Article  Google Scholar 

  • Song, C., Wang, X.-K., Cheng, P., Wang, J., & Li, L. (2020). SACPC: A framework based on probabilistic linguistic terms for short text sentiment analysis. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2020.105572.

    Article  Google Scholar 

  • Wei, J., Liao, J., Yang, Z., Wang, S., & Zhao, Q. (2019). BiLSTM with multi-polarity orthogonal attention for implicit sentiment analysis. Neurocomputing, 383, 165–173. https://doi.org/10.1016/j.neucom.2019.11.054.

    Article  Google Scholar 

  • Zhuang, L., Schouten, K., & Frasincar, F. (2019). SOBA: Semi-automated ontology builder for aspect-based sentiment analysis. Journal of Web Semantics, 60, 100544. https://doi.org/10.1016/j.websem.2019.100544.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandramohan Dhasarathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, H., Dhasarathan, C., Munisamy, S. et al. Natural Language Processing Based Sentimental Analysis of Hindi (SAH) Script an Optimization Approach. Int J Speech Technol 23, 757–766 (2020). https://doi.org/10.1007/s10772-020-09730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-020-09730-x

Keywords