Skip to main content

Advertisement

Log in

Using novel method: Real Cepstral Discrete Cosine Transform, for detecting Parkinson from multiple system atrophy, other neurological diseases and healthy cases using voice analysis

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

This paper seeks to detect Parkinson’s disease among healthy cases, several neurological diseases, in particular those which are very similar, that is to say representing a parkinsonian syndrome such as multi system atrophy. Early detection based on the phonatory symptoms will offer a possibility to the treatments proposed by the doctors to act effectively on the patient hence the interest of our project. We used several algorithms such as MFCC, PLP and RASTA PLP in addition to our new technique called Real Cepstral Discrete Cosine Transform with an SVM classifier with its different kernels to guarantee a better detection.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Benba, A., Jilbab, A., & Hammouch, A. (2015). Detecting patients with Parkinson’s disease using Mel frequency cepstral coefficients and support vector machines. International Journal on Electrical Engineering and Informatics, 7(2), 297.

    Article  Google Scholar 

  • Benba, A., Jilbab, A., & Hammouch, A. (2016a). Discriminating between patients with Parkinson’s and neurological diseases using cepstral analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(10), 1100–1108.

    Article  Google Scholar 

  • Benba, A., Jilbab, A., & Hammouch, A. (2016b). Analysis of multiple types of voice recordings in cepstral domain using MFCC for discriminating between patients with Parkinson’s disease and healthy people. International Journal of Speech Technology, 19(3), 449–456.

    Article  Google Scholar 

  • Benba, A., Jilbab, A., & Hammouch, A. (2016c). Voice assessments for detecting patients with Parkinson’s diseases using PCA and NPCA. International Journal of Speech Technology, 19(4), 743–754.

    Article  Google Scholar 

  • Benba, A., Jilbab, A., & Hammouch, A. (2017a). Detecting multiple system atrophy, Parkinson and other neurological disorders using voice analysis. International Journal of Speech Technology, 20(2), 281–288.

    Article  Google Scholar 

  • Benba, A., Jilbab, A., & Hammouch, A. (2017b). Voice assessments for detecting patients with neurological diseases using PCA and NPCA. International Journal of Speech Technology, 20(3), 673–683.

    Article  Google Scholar 

  • de la Fuente-Fernández, R. (2012). Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology, 78(10), 696–701.

    Article  Google Scholar 

  • De Lau, L. M. L., & Breteler, M. M. B. (2016). Epidemiology of Parkinson’s disease. Lancet Neurology, 5, 525–535.

    Article  Google Scholar 

  • Fenelon, G. (1997). Diagnostic et évolution (sous traitement) de la maladie de Parkinson: Mouvements anormaux. La Revue du praticien, 47(10), 1062–1067.

    Google Scholar 

  • Gibb, W. R., & Lees, A. J. (1988). The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 51(6), 745–752.

    Article  Google Scholar 

  • Hermansky, H. (1990). Perceptual linear predictive (PLP) analysis of speech. The Journal of the Acoustical Society of America, 87(4), 1738–52.

    Article  Google Scholar 

  • Hermansky, H., Morgan, N., Bayya, A., & Kohn, P. (1992). RASTA-PLP speech analysis technique. In: ICASSP-92. 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1992, 1992 Mar 23 (Vol. 1, pp. 121–124). IEEE.

  • Khellat Kihel, B. (2012). La Reconnaissance Automatique de la Maladie de Parkinson (Doctoral dissertation, usto).

  • Little, M. A., McSharry, P. E., Hunter, E. J., Spielman, J., & Ramig, L. O. (2009). Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Transactions on Biomedical Engineering, 56(4), 1015–1022.

    Article  Google Scholar 

  • Little, M. A., McSharry, P. E., Roberts, S. J., Costello, D. A., & Moroz, I. M. (2007). Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine, 6(1), 23.

    Article  Google Scholar 

  • Makhoul, J., & Cosell, L. (1976). LPCW: An LPC vocoder with linear predictive spectral warping. In: IEEE International Conference on ICASSP’76, Acoustics, Speech, and Signal Processing, 1976 Apr (Vol. 1, pp. 466–469). IEEE.

  • Poupon, F. (1999). "Parcellisation" systématique du cerveau en volumes d'intérêt: Le cas des structures profondes (Doctoral dissertation, Lyon, INSA).

  • Sakar, B. E., Isenkul, M. E., Sakar, C. O., Sertbas, A., Gurgen, F., Delil, S., Apaydin, H., & Kursun, O. (2013). Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE Journal of Biomedical and Health Informatics, 17(4), 828–834.

    Article  Google Scholar 

  • Selkoe, D. J., & Lansbury, P. J., Jr. (1999). basic Neurochemistry: Molecular, cellular and medical aspects (6th ed.). American Society for Neurochemistry.

    Google Scholar 

  • Skipper, L., Wilkes, K., Toft, M., Baker, M., Lincoln, S., Hulihan, M., Ross, O. A., Hutton, M., Aasly, J., & Farrer, M. (2004). Linkage disequilibrium and association of MAPT H1 in Parkinson disease. The American Journal of Human Genetics, 75(4), 669–677.

    Article  Google Scholar 

  • Soikkeli, R., Partanen, J., Soininen, H., Pääkkönen, A., & Riekkinen, P. (1991). Slowing of EEG in Parkinson’s disease. Electroencephalography and Clinical Neurophysiology, 79(3), 159–165.

    Article  Google Scholar 

  • Van Den Eeden, S. K., Tanner, C. M., Bernstein, A. L., Fross, R. D., Leimpeter, A., Bloch, D. A., & Nelson, L. M. (2003). Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. American Journal of Epidemiology, 157(11), 1015–1022.

    Article  Google Scholar 

  • Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., & Valtchev, V. (2002). The HTK book (Vol. 3, p. 175). Cambridge University Engineering Department.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achraf Benba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benba, A., Laaqira, I., Jilbab, A. et al. Using novel method: Real Cepstral Discrete Cosine Transform, for detecting Parkinson from multiple system atrophy, other neurological diseases and healthy cases using voice analysis. Int J Speech Technol 25, 163–172 (2022). https://doi.org/10.1007/s10772-021-09896-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-021-09896-y

Keywords

Navigation