Skip to main content
Log in

Automatic age recognition, call-type classification, and speaker identification of Zebra Finches (Taeniopygia guttata) using hidden Markov models (HMMs)

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Hidden Markov models (HMMs) were developed and implemented to discriminate between each of the 2 ages, 11 call-types, and 51 speakers of birds using cross-validation on the recordings in the 3314 database for chick (19–25 days of age) and adult (60 days–7 years of age) vocalizations of Zebra Finches (Taeniopygia guttata). By applying both temporal [delta (velocity) and delta-delta (acceleration) coefficients] and spectral [Mel-Frequency Cepstral Coefficients (MFCCs)] features, the HMMs produced excellent performance with accuracies on the three tasks: (1) 96.68% (age recognition); (2) 94.62% (chicks) and 79.30% (adults) (call-type classification); and (3) 55.32% (12 speakers, chicks) and 16.78% (33 speakers, adults) to 100.00% (2 speakers, chicks), and 100.00% (3 speakers adults) (speaker identification). Based on the performances, the HMMs could be extended to other animals for automatic recognition, classification, and identification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

N/A.

References

  • Austad, S. (1997). Birds as models of aging in biomedical research. ILAR Journal, 38(3), 137–140.

    Article  Google Scholar 

  • Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probability functions of Markov chains. The Annals of Mathematical Statistics, 41(1), 164–171.

    Article  MATH  Google Scholar 

  • Bianco, M., Gerstoft, P., Traer, J., Ozanich, E., Roch, M., Gannot, S., & Deledalle, C. (2019). Machine learning in acoustics: Theory and applications. The Journal of the Acoustical Society of America, 146(5), 3590–3628.

    Article  Google Scholar 

  • Brown, C., & Riede, T. (2017). Comparative bioacoustics: An overview. Bentham Science Publishers.

    Book  Google Scholar 

  • Clemins, P. J. (2005). Automatic classification of animal vocalizations. Marquette University.

    Google Scholar 

  • Clemins, P. J., Johnson, M. T., Leong, K. M., & Savage, A. (2005). Automatic classification and speaker identification of African Elephant (Loxodonta africana) vocalizations. The Journal of the Acoustical Society of America, 117(2), 956–963.

    Article  Google Scholar 

  • Davis, S. B., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357–366.

    Article  Google Scholar 

  • Elie, J., & Theunissen, F. (2016). The vocal repertoire of the domesticated zebra finch: A data driven approach to decipher the information-bearing acoustic features of communication signals. Animal Cognition, 19(2), 285–315.

    Article  Google Scholar 

  • Elie, J., & Theunissen, F. (2018). Zebra Finches identify individuals using vocal signatures unique to each call type. Nature Communication, 9, 1–11.

    Article  Google Scholar 

  • Fischer, R. (1998). Guide to owning a Zebra Finch. T.F.H. Publications Inc.

    Google Scholar 

  • Forney, G. (1973). The Viterbi algorithm. Proceedings of IEEE, 61(3), 268–278.

    Article  MathSciNet  Google Scholar 

  • Huang, X., Acero, A., & Hon, H.-W. (2001). Spoken language processing. Prentice-Hall Inc.

    Google Scholar 

  • Ji, A., Johnson, M., Walsh, E., McGee, J., & Armstrong, D. (2013). Discrimination of individual tigers (Panthera tigris) from long distance roars. The Journal of the Acoustical Society of America, 133(3), 1762–1769.

    Article  Google Scholar 

  • Juang, B., Levinson, S. E., & Sondhi, M. (1986). Maximum likelihood estimation for multivariate mixture observations of Markov chains. IEEE Transactions on Information Theory, 32(2), 307–309.

    Article  Google Scholar 

  • Kvsn, R. R., Montgomery, J., Garg, S., & Charleston, M. (2020). Bioacoustics data analysis—A taxonomy, survey and open challenges. IEEE Access, 8, 57684–57708.

    Article  Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5, 115–133.

    MathSciNet  MATH  Google Scholar 

  • Mcloughlin, M., Stewart, R., & McElligott, A. (2019). Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. Journal of the Royal Society Interface, 16, 1–12.

    Article  Google Scholar 

  • Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6), 47–60.

    Article  Google Scholar 

  • Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. IEEE ASSP Magazine, 3(1), 4–16.

    Article  Google Scholar 

  • Ren, Y., Johnson, M. T., Clemins, P. J., Darre, M., Glaeser, S. S., Osiejuk, T. S., & Out-Nyarko, E. (2009). A framework for bioacoustic vocalization analysis using hidden Markov models. Algorithms, 2(4), 1410–1428.

    Article  Google Scholar 

  • Seyfarth, R., & Cheney, D. (2003). Signalers and receivers in animal communication. Annual Review of Psychology, 54, 145–173.

    Article  Google Scholar 

  • Slater, P. (2009). The slater field guide to Australian birds. New Holland Publishers.

    Google Scholar 

  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111–147.

    MathSciNet  MATH  Google Scholar 

  • Stowell, D., Petruskova, T., Salek, M., & Linhart, P. (2019). Automatic acoustic identification of individuals in multiple species: Improving identification across recording conditions. Journal of the Royal Society Interface, 16, 1–13.

    Article  Google Scholar 

  • Trawicki, M. (2021). Multispecies discrimination of whales (cetaceans) using hidden Markov models (HMMs). Ecological Informatics, 61, 101223.

    Article  Google Scholar 

  • Trawicki, M. B., & Johnson, M. T. (2005). Automatic song-type classification and speaker identification of norwegian ortolan bunting (Emberiza hortulana) vocalizations. In 2005 IEEE workshop on machine learning for signal processing. Mystic.

  • Von Bekesy, G. (1989). Experiments in hearing. McGraw-Hill Book Company.

    Google Scholar 

  • Vriends, M. (1997). The Zebra Finch. Howell Book House.

    Google Scholar 

  • Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., & Woodland, P. (2009). Hidden Markov model toolkit (HTK) (version 3.4). Cambridge University Engineering Department.

    Google Scholar 

  • Zann, R. (1996). The Zebra Finch: A synthesis of field and laboratory studies. Oxford University Press.

    Book  Google Scholar 

Download references

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

Author was the sole contributor to the research work.

Corresponding author

Correspondence to Marek B. Trawicki.

Ethics declarations

Conflict of interest

Author declare that has no competing interest.

Ethical approval

Author maintained the highest level of integrity in the research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trawicki, M.B. Automatic age recognition, call-type classification, and speaker identification of Zebra Finches (Taeniopygia guttata) using hidden Markov models (HMMs). Int J Speech Technol 26, 641–650 (2023). https://doi.org/10.1007/s10772-023-10041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-023-10041-0

Keywords

Navigation