Skip to main content

Advertisement

Log in

Closed-form Solution for Joint Localization and Synchronization in Wireless Sensor Networks With and Without Beacon Uncertainties

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

In Wireless Sensor Networks (WSNs), the use of the same set of measurement data for simultaneous localization and synchronization is potentially useful for achieving higher estimation accuracy, and lower communication overhead and power consumption. In this paper, we first analyze the impact of asynchronous sensor nodes (SNs) on the accuracy of time-based localization schemes, and the impact of inaccurate SN location information on the accuracy of synchronization based on packet delay measurement, to illustrate the necessity and significance of simultaneous localization and synchronization of SNs. We then consider the joint localization and synchronization problem for two cases. In the first case, we assume that the beacon information is perfectly known. The Maximum Likelihood (ML) estimator is first formulated, which is computationally expensive. A new closed-form Joint Localization and Synchronization I (JLS-I) estimator is then proposed to provide a computationally efficient solution. In the second case, we assume that the beacon locations and timings are known inaccurately, and develop the ML and JLS-II estimators accordingly. JLS-II is based on Weighted Least Square and Generalized Total Least Square, and is of low complexity. The Cramer-Rao Lower Bounds (CRLBs) and the analytical Mean Square Errors of the proposed estimators are derived, and we also analytically show that JLS-I can achieve the corresponding CRLB. Simulation results demonstrate the effectiveness of the proposed estimators compared to other approaches. With only a three-way message exchange, JLS-I can attain the CRLB and JLS-II can provide close to optimal performance in their respective scenarios. They are also robust against the Geometric Dilution of Precision problem, and outperform existing algorithms in NLOS scenarios. Our results demonstrate the advantages of JLS-I and JLS-II in reduced computational complexity with lower power consumption and communication cost while achieving high estimation accuracy. They are therefore attractive solutions to the simultaneous localization and synchronization problem in WSNs where energy and network resources are the most important considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D. S. Ray, A. Trachtenberg and R. Ungrangsi, Robust location detection with sensor networks, IEEE Journal on Selected Areas in Communications, Vol. 22, pp. 1016–1025, 2004.

    Article  Google Scholar 

  2. N. Bulusu, J. Heidemann and D. Estrin, GPS-less low-cost outdoor localization for very small devices, IEEE Personal Communications, Vol. 7, pp. 28–34, 2000.

    Article  Google Scholar 

  3. M. Kanaan and K. Pahlavan, A comparison of wireless geolocation algorithms in the indoor environment, in Wireless Communications and Networking Conference, 2004. WCNC. IEEE, Vol. 1, pp. 177–182, 2004.

  4. F. K. W. Chan, H. C. So, J. Zheng and K. W. K. Lui, Best linear unbiased estimator approach for time-of-arrival based localisation, IET Signal Processing, Vol. 2, pp. 156–162, 2008.

    Article  Google Scholar 

  5. Y. T. Chan and K. C. Ho, A simple and efficient estimator for hyperbolic location, IEEE Transactions on Signal Processing, Vol. 42, pp. 1905–1915, 1994.

    Article  Google Scholar 

  6. X. Cheng, A. Thaeler, G. Xue and D. Chen, TPS: a time-based positioning scheme for outdoor wireless sensor networks, in INFOCOM 2004. Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies, Vol. 4, pp. 2685–2696, 2004.

  7. D. Niculescu and B. Nath, Ad hoc positioning system (APS) using AOA, in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications Societies. IEEE, Vol. 3, pp. 1734–1743, 2003.

  8. S. Sakagami, S. Aoyama, K. Kuboi, S. Shirota and A. Akeyama, Vehicle position estimates by multibeam antennas in multipath environments, IEEE Transactions on Vehicular Technology, Vol. 41, pp. 63–68, 1992.

    Article  Google Scholar 

  9. G. Mao, B. Fidan and B. D. O. Anderson, Wireless sensor network localization techniques, Computer Networks, Vol. 51, pp. 2529–2553, 2007.

    Article  MATH  Google Scholar 

  10. V. Y. Zhang and A. K. Wong, Combined AOA and TOA NLOS localization with nonlinear programming in severe multipath environments, in Wireless Communications and Networking Conference, 2009. WCNC 2009. IEEE, pp. 1–6, 2009.

  11. S. Y. Park, H.-S. Ahn, and W. Yu, A simple object tracking system using ITDOA without time synchronization, in Advanced Communication Technology, the 9th International Conference on, Vol. 3, pp. 2026–2028, 2007.

  12. T. Li, A. Ekpenyong and Y.-F. Huang, Source localization and tracking using distributed asynchronous sensors, IEEE Transactions on Signal Processing, Vol. 54, pp. 3991–4003, 2006.

    Article  Google Scholar 

  13. E. Nakamura and A. Loureiro, Information fusion in wireless sensor networks, in SBBD ‘08: Proceedings of the 23rd Brazilian Symposium on Databases, pp. 317–318, 2008.

  14. D. L. Mills, Network time protocol version 4 reference and implementation guide, Department of Electrical and Computer Engineering, University of Delaware, Tech. Rep. 06-06-1, 2006.

  15. F. Sivrikaya and B. Yener, Time synchronization in sensor networks: a survey, IEEE Network, Vol. 18, pp. 45–50, 2004.

    Article  Google Scholar 

  16. J. Elson, L. Girod and D. Estrin, Fine-grained network time synchronization using reference broadcasts, SIGOPS Operating System Review, Vol. 36, pp. 147–163, 2002.

    Article  Google Scholar 

  17. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, The flooding time synchronization protocol, in SenSys ‘04: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, pp. 39–49, 2004.

  18. S. Ping, Delay measurement time synchronization for wireless sensor networks, Technical Report IRB-TR-03-013, Intel Research, June, 2003.

  19. K. Römer and F. Mattern, Towards a unified view on space and time in sensor networks, Computer Communications, vol. 28, no. 13, pp. 1484–1497, Aug. 2005.

  20. H. A. B. F. de Oliveira, E. F. Nakamura, A. A. F. Loureiro, and A. Boukerche, Localization in time and space for sensor networks, in AINA ‘07: Proceedings of the 21st International Conference on Advanced Networking and Applications, pp. 539–546, 2007.

  21. A. Boukerche, H. A. B. F. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, A novel lightweight algorithm for time-space localization in wireless sensor networks, in MSWiM ‘07: Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, pp. 336–343, 2007.

  22. A. Boukerche, H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, Localization in time and space for wireless sensor networks: A Mobile Beacon approach, in World of Wireless, Mobile and Multimedia Networks, 2008. WoWMoM 2008. 2008 International Symposium on a, pp. 1–8, 2008.

  23. J. Zheng and Y.-C. Wu, Localization and time synchronization in wireless sensor networks: a unified approach, in IEEE Asia Pacific Conference on Circuits and Systems, 2008. APCCAS 2008, pp. 594–597, 2008.

  24. J. Zheng and Y.-C. Wu, Joint localization and time synchronization in wireless sensor networks with anchor uncertainties, in IEEE Wireless Communications and Networking Conference, 2009. WCNC 2009, pp. 1–5, 2009.

  25. K.-L. Noh, Q. M. Chaudhari, E. Serpedin and B. W. Suter, Novel clock phase offset and skew estimation using two-way timing message exchanges for wireless sensor networks, IEEE Transactions on Communications, Vol. 55, pp. 766–777, 2007.

    Article  Google Scholar 

  26. S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University PressCambridge, UK, 2004.

    MATH  Google Scholar 

  27. S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-HallEnglewood Cliffs, NJ, 1993.

    MATH  Google Scholar 

  28. J. Albowicz, A. Chen, and Lixia Zhang, Recursive position estimation in sensor networks, in Ninth International Conference on Network Protocols, 2001, pp. 35–41, 2001.

  29. S. Van Huffel and J. Vandewalle, Analysis and properties of the generalized total least squares problem AX ≈ B when some or all columns in A are subject to error, SIAM Journal on Matrix Analysis and Applications, Vol. 10, No. 3, pp. 294–315, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. L. Scharf, Statistical Signal Process: Detection, Estimation and Time Series Analysis, Addison-WesleyReading, MA, 1991.

    MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank Hong Kong RGC (Project Number: 620410) for supporting this work, and we also like to thank the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Ying Zhang.

Appendices

Appendix 1: Derivation of \( \text{cov} ({\mathbf{e}}_{1}^{\prime} ) \) and C U

For notation simplicity, we define the following symbols. The observed timing information of the beacons are grouped as \( {\mathbf{o}} = [\theta_{1} ,\Upomega_{1} , \ldots ,\theta_{N} ,\Upomega_{N} ]^{T} \), and their error vectors are denoted as \( \Updelta {\mathbf{o}} = [\Updelta \theta_{1} ,\Updelta \Upomega_{1} , \ldots ,\Updelta \theta_{N} ,\Updelta \Upomega_{N} ]^{T} \) with covariance matrix C o . The covariance matrix of each observed beacon location vector is defined as \( {\mathbf{C}}_{{{\mathbf{x}}_{j} }} = E[{\mathbf{x}}_{j} {\mathbf{x}}_{j}^{T} ],j = 1, \ldots ,N \). Note that C o and \( {\mathbf{C}}_{{{\mathbf{x}}_{j} }} \)can be determined from C β . Since \( \theta_{j} = {1 \mathord{\left/ {\vphantom {1 {\left( {1 + \varepsilon_{j} } \right)}}} \right. \kern-0pt} {\left( {1 + \varepsilon_{j} } \right)}} = 1 - \varepsilon_{j} + \sum\limits_{k = 1}^{\infty } {\left( {\varepsilon_{j} } \right)^{k} } \) and \( \varepsilon_{j} \) is usually much smaller than 10−3, we can only maintain the linear order terms, i.e., \( \theta_{j} \approx 1 - \varepsilon_{j} \). Therefore, we can just approximate the variance of θ j using that of ε j .

We first derive \( {\text{cov(}}{\mathbf{e}}_{ 1}^{\prime} ) \). Recalling the definition of \( {\mathbf{e}}_{ 1}^{\prime} \) in (49), we can rewrite \( {\mathbf{e}}_{ 1}^{\prime} \) as

$$ {\mathbf{e}}_{1}^{\prime} = {\mathbf{e}}_{1} + {\mathbf{Q}}\Updelta {\mathbf{o}}, $$
(79)

where e 1 is defined in (14), and

$$ {\mathbf{Q}} = diag\left[ {\begin{array}{*{20}c} {{\mathbf{Q}}_{1} ,} \hfill & { \cdots ,} \hfill & {{\mathbf{Q}}_{N} } \hfill \\ \end{array} } \right],\,{\mathbf{Q}}_{j} = \left[ {\begin{array}{*{20}c} {cR_{j}^{1} - c\Upomega_{j}^{0} } & { - c\theta_{j}^{0} } \\ { - cT_{j}^{2} + c\Upomega_{j}^{0} } & {c\theta_{j}^{0} } \\ \vdots & \vdots \\ \end{array} } \right]_{M \times 2} . $$
(80)

Since the range measurement noise e 1 is assumed to be uncorrelated with the beacon timing error Δo, the covariance matrix of \( {\mathbf{e}}_{ 1}^{\prime} \), \( {\text{cov(}}{\mathbf{e}}_{ 1}^{\prime} ) \), is then given by

$$ {\text{cov}}\left( {{\mathbf{e}}_{1}^{'} } \right) = {\mathbf{C}}_{{\mathbf{n}}} + {\mathbf{QC}}_{{\mathbf{o}}} {\mathbf{Q}}^{T} . $$
(81)

We then derive C U .

$$ {\mathbf{C}}_{{\mathbf{U}}} = \left[ {\begin{array}{*{20}c} {E\left[ {\Updelta {\mathbf{A}}_{2}^{T} \Updelta {\mathbf{A}}_{2} } \right]} \hfill & {E\left[ {\Updelta {\mathbf{A}}_{2}^{T} {\varvec{\delta}}_{2} } \right]} \hfill \\ {E\left[ {{\varvec{\delta}}_{2}^{T} \Updelta {\mathbf{A}}_{2} } \right]} \hfill & {E\left[ {{\varvec{\delta}}_{2}^{T} {\varvec{\delta}}_{2} } \right]} \hfill \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {{\mathbf{C}}_{{\mathbf{A}}} } \hfill & {{\mathbf{C}}_{{{\mathbf{A\delta }}}} } \hfill \\ {{\mathbf{C}}_{{{\mathbf{A\delta }}}}^{T} } \hfill & {{\mathbf{C}}_{{\varvec{\delta}}} } \hfill \\ \end{array} } \right]. $$
(82)

Recalling the definition of ΔA 2 and δ = Δh 2 − e 2 in (54) and (30), we have

$$ {\mathbf{C}}_{{\mathbf{A}}} = 4\sum\limits_{j = 1}^{N} {{\mathbf{C}}_{{{\mathbf{x}}_{j} }} } ,\,{\mathbf{C}}_{{{\mathbf{A\delta }}}} = 4\sum\limits_{j = 1}^{N} {{\mathbf{C}}_{{{\mathbf{x}}_{j} }} {\mathbf{x}}_{j}^{0} } , $$
$$ {\mathbf{C}}_{{\varvec{\delta}}} = \left( {1 + \Upomega^{02} } \right)E\left[ {\Updelta \theta^{2} } \right] + E\left[ {\Updelta \left( {\theta \Upomega } \right)^{2} } \right] - 2\Upomega^{0} E\left[ {\Updelta \theta \Updelta \left( {\theta \Upomega } \right)} \right] + 4\sum\limits_{j = 1}^{N} {r_{j}^{02} E\left[ {\Updelta r_{j}^{2} } \right]} + 4\sum\limits_{j = 1}^{N} {{\mathbf{x}}_{j}^{0T} {\mathbf{C}}_{{{\mathbf{x}}_{j} }} {\mathbf{x}}_{j}^{0} } . $$
(83)

where Eθ 2], E[Δ(θΩ) 2], EθΔ(θΩ] and Er 2 j ] can be easily determined from cov(φ 1) in (51).

Appendix 2

Defining Θ = [θ, θΩ]T, \( {\mathbf{r}} = [r_{ 1} , \ldots ,r_{N} ]^{T} \) and applying the chain rule, we can express (62) in the product form as

$$ {\text{FIM}}\left( {\varvec{\rho}} \right) = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{f}}}}{{\partial {\varvec{\Uptheta}}^{0} }}\frac{{\partial {\varvec{\Uptheta}}^{0} }}{{\partial {\varvec{\Upphi}}^{0} }},} & {\frac{{\partial {\mathbf{f}}}}{{\partial {\mathbf{r}}^{0} }}\frac{{\partial {\mathbf{r}}^{0} }}{{\partial {\mathbf{x}}^{0} }}} \\ \end{array} } \right]^{T} {\mathbf{C}}_{{\mathbf{n}}}^{ - 1} \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{f}}}}{{\partial {\varvec{\Uptheta}}^{0} }}\frac{{\partial {\varvec{\Uptheta}}^{0} }}{{\partial {\varvec{\Upphi}}^{0} }},} & {\frac{{\partial {\mathbf{f}}}}{{\partial {\mathbf{r}}^{0} }}\frac{{\partial {\mathbf{r}}^{0} }}{{\partial {\mathbf{x}}^{0} }}} \\ \end{array} } \right] = {\mathbf{D}}^{T} \times {\text{FIM}}^{\prime} \times {\mathbf{D}}, $$
(84)

where

$$ {\mathbf{D}} = \left[ {\begin{array}{*{20}c} {{\mathbf{0}}_{N \times 2} } & {\frac{{\partial {\mathbf{r}}^{0} }}{{\partial {\mathbf{x}}^{0} }}} \\ {\frac{{\partial {\varvec{\Uptheta}}^{0} }}{{\partial {\varvec{\Upphi}}^{0} }}} & {{\mathbf{0}}_{2 \times 2} } \\ \end{array} } \right]_{{\left( {N + 2} \right) \times 4}} ,\quad {\text{FIM}}^{\prime} = \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{f}}}}{{\partial {\mathbf{r}}^{0} }},} & {\frac{{\partial {\mathbf{f}}}}{{\partial {\varvec{\Uptheta}}^{0} }}} \\ \end{array} } \right]^{T} {\mathbf{C}}_{{\mathbf{n}}}^{ - 1} \left[ {\begin{array}{*{20}c} {\frac{{\partial {\mathbf{f}}}}{{\partial {\mathbf{r}}^{0} }},} & {\frac{{\partial {\mathbf{f}}}}{{\partial {\varvec{\Uptheta}}^{0} }}} \\ \end{array} } \right]. $$
(85)

It is trivial to verify that \( {\mathbf{G}}_{1} = [{{\partial {\mathbf{f}}} \mathord{\left/ {\vphantom {{\partial {\mathbf{f}}} {\partial {\mathbf{r}}^{0} }}} \right. \kern-0pt} {\partial {\mathbf{r}}^{0} }},{{\partial {\mathbf{f}}} \mathord{\left/ {\vphantom {{\partial {\mathbf{f}}} {\partial {\varvec{\Uptheta}}^{0} }}} \right. \kern-0pt} {\partial {\varvec{\Uptheta}}^{0} }}] \). With the relationship W 1 = C −1 n , the equivalence of cov(φ 1)−1 and FIM′ is obvious by comparing (24) with (85).

Substituting (32) into (33), and applying the above conclusion, i.e., cov(φ 1)−1 = FIM′, we have

$$ \text{cov} (\varphi_{2} ) = \left( {{\mathbf{G}}_{2}^{T} \left( {{\mathbf{B}}_{2} {\text{FIM}}^{\prime - 1} {\mathbf{B}}_{2}^{T} } \right)^{ - 1} {\mathbf{G}}_{2} } \right)^{ - 1} . $$
(86)

Since B 2 is a (N + 2) × (N + 2) matrix with full rank, (86) can be rewritten as

$$ \text{cov} (\varphi_{2} ) = \left( {{\mathbf{G}}_{2}^{T} {\mathbf{B}}_{2}^{ - T} {\text{FIM}}^{\prime}{\mathbf{B}}_{2}^{ - 1} {\mathbf{G}}_{2} } \right)^{ - 1} . $$
(87)

Similarly, since B 3 is a 5 × 5 matrix with full rank if the SN is neither on the x axis nor on the y axis, or can be made full rank with proper coordinate transformation if the SN is on either the x or y axis, cov(φ 3) can be expressed as (88) by substituting (87) into (41).

$$ \text{cov} (\varphi_{3} ) = \left( {{\mathbf{G}}_{3}^{T} {\mathbf{B}}_{3}^{ - T} {\mathbf{G}}_{2}^{T} {\mathbf{B}}_{2}^{ - T} {\text{FIM'}}{\mathbf{B}}_{2}^{ - 1} {\mathbf{G}}_{2} {\mathbf{B}}_{3}^{ - 1} {\mathbf{G}}_{3} } \right)^{ - 1} . $$
(88)

Consequently, the error covariance matrix of JLS-I is derived from (77) and (88) as

$$ \text{cov} ({\varvec{\rho}}) = \left( {{\mathbf{B}}_{4}^{T} {\mathbf{G}}_{3}^{T} {\mathbf{B}}_{3}^{ - T} {\mathbf{G}}_{2}^{T} {\mathbf{B}}_{2}^{ - T} {\text{FIM'}}{\mathbf{B}}_{2}^{ - 1} {\mathbf{G}}_{2} {\mathbf{B}}_{3}^{ - 1} {\mathbf{G}}_{3} {\mathbf{B}}_{4} } \right)^{ - 1} . $$
(89)

It can be easily identified that CRLB(ρ) and cov(ρ) are identical if

$$ {\mathbf{D}} \cong {\mathbf{B}}_{2}^{ - 1} {\mathbf{G}}_{2} {\mathbf{B}}_{3}^{ - 1} {\mathbf{G}}_{3} {\mathbf{B}}_{4} . $$
(90)

Premultiplying B 2 at both sides of (90), we can easily observe that proving (90) is equivalent to showing (91).

$$ {\mathbf{B}}_{2} {\mathbf{D}} \cong {\mathbf{G}}_{2} {\mathbf{B}}_{3}^{ - 1} {\mathbf{G}}_{3} {\mathbf{B}}_{4} . $$
(91)

Substituting B 2, G 2, B 3, G 3, B 4 and D with the expressions in (30), (38), (76) and (85) respectively, using simple algebra manipulations, and ignoring the noise in G 2, the correctness of (91) can be easily verified.

Consequently, we establish that

$$ \text{cov}_{{{\text{JLS}} - {\text{I}}}} ({\varvec{\rho}}) = {\text{CRLB}}\left( {\varvec{\rho}} \right). $$
(92)

It is worthy to note that the above proof does not depend on the specific form of C n , and hence the analysis also applies to the scenario when measurement errors are correlated as long as they are Gaussian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, V.Y., Wong, A.Ks. Closed-form Solution for Joint Localization and Synchronization in Wireless Sensor Networks With and Without Beacon Uncertainties. Int J Wireless Inf Networks 20, 120–139 (2013). https://doi.org/10.1007/s10776-012-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-012-0200-6

Keywords

Navigation