Skip to main content
Log in

Low-Load Survivable Routing Protocol for LEO Satellite Networks

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

In this paper, we put forward the methods of footprint shift and separation for the virtual topology model of LEO satellite networks, which can reduce the effects of the Polar Regions and cross-seam inter-satellite-links (ISLs) on the virtual topology and improve the utilization of ISLs. Furthermore, a low-load survivable routing protocol called Virtual Snapshot Routing Protocol is proposed for LEO satellite networks. The proposed protocol not only reduces the routing computation and storage overheads, but also provides good routing survivability under random satellite failure. The experimental results confirm our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Clark, The Design Philosophy of the DARPA Internet Protocols, SIGCOMM 88 Symposium proceedings on Communications architectures and protocols 1988;18(4): 106-14.

  2. Open Shortest Path First V2, RFC, Internet Engineering Task Force (IETF) Request for Comments 1998;2328.

  3. Routing Information Protocol V2, RFC, Internet Engineering Task Force (IETF) Request for Comments 1998;2453.

  4. M. Werner, A dynamic routing concept for ATM-based satellite personal communication networks, IEEE Journal on Selected Areas in Communications, Vol. 15, No. 8, pp. 1636–1648, 1997.

    Article  Google Scholar 

  5. Chang, H. S, Kim, B. W, Lee, C, FSA-based link assignment and routing in low-earth orbit satellite networks, IEEE Transaction on Vehicular Technology, 1998; 47 (3):1037-1048.

  6. Gounder, V.V., Prakash, R., Abu-Amara, H, Routing in LEO-based satellite networks, In: Richardson,TX. Proc of the Wireless Communications and Systems Workshop, 1999:2211-2216.

  7. H. Chang, B. W. Kim, C. G. Lee, Y. Choi, S. L. Min, H. S. Yang, and C. S. Kim, Topological design and routing for low-earth orbit satellite networks, in Proc. IEEE GLOBECOM’95 1995;529–535.

  8. M. Werner, C. Delucchi, H.-J. Vogel, G. Maral and J.-J. De Ridder, ATM-based routing in LEO/MEO satellite networks with intersatellite links, IEEE Journal on Selected Areas in Communications, Vol. 15, No. 1, pp. 69–82, 1997.

    Article  Google Scholar 

  9. H. Uzunalioglu, I. F. Akyildiz and M. D. Bender, A routing algorithm for LEO satellite networks with dynamic connectivity, ACM–Baltzer, J. Wireless Networks (WINET), Vol. 6, No. 3, pp. 181–190, 2000.

    Article  MATH  Google Scholar 

  10. J. Wang, L. Li and M. Zhou, Topological dynamics characterization for LEO satellite networks, Computer Networks, Vol. 51, No. 1, pp. 43–53, 2009.

    Article  MathSciNet  Google Scholar 

  11. Fischer D,Basin D,Engel T, Topology dynamics and routing for predictable mobile networks. In:Proc.of the ICNP 2008.Orlando: IEEE Communications Society 2008:207-217.

  12. E. Ekici, I. F. Akyildiz and M. D. Bender, A Distributed Routing Algorithm for Datagram Traffic in LEO Satellite Networks, IEEE/ACM Trans. Networking, Vol. 9, No. 2, pp. 137–147, 2001.

    Article  Google Scholar 

  13. T.R. Henderson, R.H. Katz, On distributed, geographic-based packet routing for LEO satellite networks, in: Proceedings of IEEE Global Telecommunications Conference 2000; 2:1119–1123.

  14. W. A. N. G. Kaidong, Y. I. Kechu, T. I. A. N. Bin and W. U. Chengke, Packet routing algorithm for polar orbit LEO satellite constellation network, Science in China: Series F Information Sciences, Vol. 49, No. 1, pp. 103–127, 2006.

    Article  MATH  Google Scholar 

  15. O. Korcak, F. Alagoz and A. Jamalipour, Priority-based adaptive routing in NGEO satellite networks, International Journal of Communication Systems, Vol. 20, No. 3, pp. 313–333, 2007.

    Article  Google Scholar 

  16. C. Chen and E. Ekici, A Routing Protocol for Hierarchical LEO/MEO Satellite IP Networks, ACM/Kluwer Wireless Networks Journal (WINET), Vol. 11, No. 4, pp. 507–521, 2005.

    Article  Google Scholar 

  17. Fei Long, Naixue Xiong, Athanasios V. Vasilakos, Laurence T. Yang and Fuchun Sun, A sustainable heuristic QoS routing algorithm for pervasive multi-layered satellite wireless networks, J. Wireless Networks, Vol. 16, No. 6, pp. 1657–1673, 2010.

    Article  Google Scholar 

  18. Yunhui Zhou, Fuchun Sun, Bo Zhang, A novel QoS routing protocol for LEO and MEO satellite networks, Int. J. Satell. Commun. Network. 2007; 25:603–617.

  19. Yuan Rao, Ru-chuan Wang, Agent-based load balancing routing for LEO satellite networks, computer networks, Vol. 54, No. 17, pp. 3187–3195, 2010.

    MATH  Google Scholar 

  20. J. Restrepo and G. Maral, Cellular geometry for world-wide coverage by non-GEO satellites using ‘Earth-fixed cell’ technique, Space Communications, Vol. 14, pp. 179–189, 1996.

    Google Scholar 

  21. Korcak Omer and Alagoz Fatih, Virtual topology dynamics and handover mechanisms in Earth-fixed LEO satellite systems, Vol. 53, No. 9, pp. 1497–1511, 2009.

    Google Scholar 

  22. Y. Lu, F. C. Sun and Y. J. Zhao, Virtual topology for LEO satellite networks based on earth-fixed footprint mode, IEEE Communications Letters, Vol. 17, No. 2, pp. 357–360, 2013.

    Article  Google Scholar 

  23. Y. Lu, Y. J. Zhao, F. C. Sun and H. B. Li, A survivable routing protocol for two-layered LEO/MEO satellite networks, Wireless Networks, Vol. 20, No. 5, pp. 871–887, 2014.

    Article  Google Scholar 

  24. Lu Yong, Fuchun Sun, Youjian Zhao, Hongbo Li and Heyu Liu, Distributed traffic balancing routing for LEO satellite networks, International Journal of Computer Network and Information Security, Vol. 6, No. 1, pp. 9–16, 2013.

    Google Scholar 

  25. Y. C. Hubbel and L. M. Sanders, A comparison of the IRIDIUM and AMPS systems, IEEE Network, Vol. 12, No. 2, pp. 52–59, 1997.

    Article  Google Scholar 

  26. M.A. Sturza, Architecture of the Teledesic satellite system. In Proc. of the International Mobile Satellite Conference (IMSC) 1995,214–218.

  27. J. Ferreira, & Galtier, J, Topological design, routing and hand-over in satellite networks, WileyHandbook of Wireless Networks and Mobile Computing London, 2005. pp. 473–507.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No: 61233007, 61373144, 61473161), National Basic Research Program of China (973 Program) (Grant No: 2013CB329105, 2012CB821206). The General Program of National Natural Science Foundation of China (Grant No: 61472210, 61472214). The National High Technology Research and Development Program of China (863 Program) (Grant No: 2013AA013302). Tsinghua University Initiative Scientific Research Program (Grant No: 20131089295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, L., Youjian, Z., Fuchun, S. et al. Low-Load Survivable Routing Protocol for LEO Satellite Networks. Int J Wireless Inf Networks 22, 73–84 (2015). https://doi.org/10.1007/s10776-015-0265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-015-0265-0

Keywords

Navigation