Skip to main content
Log in

Joint Relay Selection and Destination Assisted Cooperative Jamming with Power Allocation for Secure DF Relay Network

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

To enhance the physical-layer security of a decode-and-forward (DF) cooperative relay network in the presence of a potential eavesdropper, a joint relay selection and destination assisted cooperative jamming (CJ) scheme is proposed. In phase I, the source transmits its confidential signal, and concurrently, it cooperates with the friendly jammers and the destination to send jamming signals to confuse the eavesdropper without affecting the forwarding relay which is preselected. In phase II, the forwarding relay retransmits the decoded signal, and simultaneously, the particular relay cooperates with the friendly jammers to send jamming signal to confuse the eavesdropper without affecting the destination. The achievable secrecy rate maximization (SRM) problem is investigated by optimally allocating the power between the data signal and jamming signals. Although SRM problem is non-convex, the power allocation problem can be solved by a bisection method together with a one-dimensional search. Optimal relay selection and suboptimal relay selection schemes are also proposed to further improve the secrecy rate. Simulation results are presented to show that the joint scheme can attain higher achievable secrecy rates than some existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. D. Wyner, The wire-tap channel, Bell System Technical Journal, Vol. 54, No. 8, pp. 1355–1387, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Leung-yan-cheong and M. E. Hellman, The Gaussian wire-tap channel, IEEE Transactions on Information Theory, Vol. 24, No. 4, pp. 451–456, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Liang, H. V. Poor and S. Shamai, Secure communication over fading channels, IEEE Transactions on Information Theory, Vol. 54, No. 6, pp. 2470–2492, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. K. Gopala, L. Lai and H. E. Gamal, On the secrecy capacity of fading channels, IEEE Transactions on Information Theory, Vol. 54, No. 10, pp. 4687–4698, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  5. Shafiee S., Ulukus S., 2007. Achievable rates in Gaussian MISO channels with secrecy constraints. Proceeding of IEEE ISIT, Nice, France: IEEE Press, 2466–2470.

  6. K. Cumanan, Z. Ding, B. Sharif, et al., Secrecy rate optimizations for a MIMO secrecy Channel with a multiple-antenna eavesdropper, IEEE Transactions on Vehicular Technology, Vol. 63, No. 4, pp. 1678–1690, 2014.

    Article  Google Scholar 

  7. L. X. Li, Z. Chen, D. Zhang, et al., A full-duplex Bob in the MIMO Gaussion wiretap channel: scheme and performance, IEEE Signal Processing Letters, Vol. 23, No. 1, pp. 107–111, 2016.

    Article  Google Scholar 

  8. H. Zhao, Y. Tan, G. Pan and Y. Chen, Ergodic secrecy capacity of MRC/SC in SIMO wiretap systems with imperfect CSI, Frontiers of Information Technology & Electronic Engineering., Vol. 18, No. 4, pp. 578–590, 2016.

    Article  Google Scholar 

  9. S. Gerbracht, C. Scheunert and E. A. Jorswieck, Secrecy outage in MISO systems with partial channel information, IEEE Transactions on Information Forensics and Security, Vol. 7, No. 2, pp. 704–716, 2012.

    Article  Google Scholar 

  10. Lun, D., Zhu, H., Petropulu, A.P., et al., 2009. Amplify-and-forward based cooperation for secure wireless communications. Proceeding of IEEE International Conference Acoustics Speech Signal Processing, Taipei, Taiwan, 2613–2616.

  11. H. M. Wang, Q. Yin and X. G. Xia, Distributed beamforming for physical-layer security of two-way relay networks, IEEE Transactions on Signal Processing, Vol. 60, No. 7, pp. 3532–3545, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Lun, H. Zhu, A. P. Petropulu, et al., Improving wireless physical layer security via cooperating relays, IEEE Transactions on Signal Processing, Vol. 58, No. 3, pp. 1875–1888, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Yang, Q. Li, W. K. Ma, P. C. Ching, et al., Cooperative secure beamforming for AF relay networks with multiple eavesdroppers, IEEE Signal Processing Letters, Vol. 20, No. 1, pp. 35–38, 2013.

    Article  Google Scholar 

  14. Y. L. Zou, X. B. Wang and W. Shen, Optimal relay selection for physical-layer security in cooperative wireless networks, IEEE Journal on Selected Areas in Communications, Vol. 31, No. 10, pp. 2099–2111, 2013.

    Article  Google Scholar 

  15. C. Wang, H. Wang and X. G. Xia, Hybrid opportunistic relaying and jamming with power allocation for secure cooperative networks, IEEE Transactions on Wireless Communications, Vol. 14, No. 2, pp. 589–605, 2015.

    Article  MathSciNet  Google Scholar 

  16. Zheng Gan, L. C. Choo and K. K. Wong, Optimal cooperative jamming to enhance physical layer security using relays, IEEE Transactions on Signal Processing, Vol. 59, No. 3, pp. 1317–1322, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. P. Vilela, M. Bloch, J. Barros and S. W. Mclaughlin, Wireless secrecy regions with friendly jamming, IEEE ransactions on Information Forensics and Security, Vol. 6, No. 2, pp. 256–266, 2011.

    Article  Google Scholar 

  18. S. Luo, L. I. Jiang-yuan and A. P. Petropulu, Uncoordinated cooperative jamming for secret communications, IEEE Transactions on Information Forensics and Security, Vol. 8, No. 7, pp. 1081–1090, 2013.

    Article  Google Scholar 

  19. M. Lin, J. Ge and Y. Yang, An effective secure transmission scheme for AF relay networks with two-hop information leakage, IEEE Communications Letters, Vol. 17, No. 8, pp. 1676–1679, 2013.

    Article  Google Scholar 

  20. Vishwakarma, S., Chockalingam, A., 2013. Amplify-and-forward relay beamforming for secrecy with cooperative jamming and imperfect CSI. Proceeding of IEEE International Conference on Communications, Budapest, Hungary, 3047–3052.

  21. H. M. Wang, M. Luo, X. G. Xia and Q. Yin, Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdropper’s CSI, IEEE Signal Processing Letters, Vol. 20, No. 1, pp. 39–42, 2013.

    Article  Google Scholar 

  22. H. Hui, A. L. Swindlehurst, G. Li and J. Liang, Secure relay and jammer selection for physical layer security, IEEE Signal Processing Letters, Vol. 22, No. 8, pp. 1147–1151, 2015.

    Article  Google Scholar 

  23. J. C. Chen, R. Q. Zhang, L. Y. Song, Z. Han, et al., Joint relay and jammer selection for secure two-way relay networks, IEEE Transactions on Information Forensics and Security, Vol. 7, No. 1, pp. 310–320, 2012.

    Article  Google Scholar 

  24. J. Y. Li, A. P. Petropulu and S. Weber, On cooperative relaying schemes for wireless physical layer security, IEEE Transactions on Signal Processing, Vol. 59, No. 10, pp. 4985–4997, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. H. Park, T. Wang and M. S. Alouini, On the jamming power allocation for secure amplify-and-forward relaying via cooperative jamming, IEEE Journal on Selected Areas in Communications, Vol. 31, No. 9, pp. 1741–1750, 2013.

    Article  Google Scholar 

  26. Y. Liu, J. Li and A. P. Petropulu, Destination assisted cooperative jamming for wireless physical-layer security, IEEE Transactions on Information Forensics and Security, Vol. 8, No. 4, pp. 682–694, 2013.

    Article  Google Scholar 

  27. H. M. Wang, F. Liu and M. C. Yang, Joint cooperative beamforming, jamming, and power allocation to secure AF relay systems, IEEE Transactions on Vehicular Technology, Vol. 64, No. 10, pp. 4893–4898, 2015.

    Article  Google Scholar 

  28. D. Tse and P. Viswanath, Fundamentals of wireless communication, Cambridge Univ. PressCambridge, 2005.

    Book  MATH  Google Scholar 

  29. B. Friedlander and B. Porat, Performance analysis of a null-steering algorithm based on direction of arrival estimation, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 4, pp. 461–466, 1989.

    Article  Google Scholar 

  30. S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ. PressCambridge, 2004.

    Book  MATH  Google Scholar 

Download references

Funding

Project (HIT. MKSTISP. 2016 13) supported by the Fundamental Research Funds for the Center University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Derivation of Lemma 1

Denote \( f_{1} (P^{\prime}_{S} ,{\mathbf{w^{\prime}}}_{1} ) = \log_{2} \left( {\frac{{1 + P^{\prime}_{S} \left| {h_{SR} } \right|^{2} }}{{1 + \frac{{P^{\prime}_{S} \left| {h_{SE} } \right|^{2} }}{{1 + \left| {{\mathbf{w^{\prime}}}_{1}^{\dag } {\mathbf{h}}_{1} } \right|^{2} }}}}} \right), \) and \( f_{2} (P^{\prime}_{S} ,{\mathbf{w^{\prime}}}_{1} ,P^{\prime}_{R} ,{\mathbf{w^{\prime}}}_{2} ) = \log_{2} \left( {\frac{{1 + P^{\prime}_{R} \left| {h_{RD} } \right|^{2} }}{{1 + \frac{{P^{\prime}_{S} \left| {h_{SE} } \right|^{2} }}{{1 + \left| {{\mathbf{w^{\prime}}}_{1}^{\dag } {\mathbf{h}}_{1} } \right|^{2} }} + \frac{{P^{\prime}_{R} \left| {h_{RE} } \right|^{2} }}{{1 + \left| {{\mathbf{w^{\prime}}}_{2}^{\dag } {\mathbf{h}}_{2} } \right|^{2} }}}}} \right). \) Since \( P_{S} \) can be fixed, \( f_{1} (P_{S} ,{\mathbf{w}}_{1} ) \) is a strictly increasing function of \( \left\| {{\mathbf{w}}_{1} } \right\|^{2} . \) Consequently, if \( P^{\prime}_{S} + \left\| {{\mathbf{w^{\prime}}}_{1} } \right\|^{2} < P_{1} , \) there exists \( (P^{\prime}_{S} ,{\mathbf{w^{\prime}}}_{3} ), \)\( \left\| {{\mathbf{w^{\prime}}}_{3} } \right\|^{2} > \left\| {{\mathbf{w^{\prime}}}_{1} } \right\|^{2} \) such that \( f_{1} (P^{\prime}_{S} ,{\mathbf{w^{\prime}}}_{3} ) > f_{1} (P^{\prime}_{S} ,{\mathbf{w^{\prime}}}_{1} ). \) This contradicts the assumption that \( (P^{\prime}_{S} ,{\mathbf{w^{\prime}}}_{1} ) \) is optimum. Thus, it holds that \( P^{\prime}_{S} + \left\| {{\mathbf{w^{\prime}}}_{1} } \right\|^{2} = P_{1} . \) Similarly, we may show \( P^{\prime}_{R} + \left\| {{\mathbf{w^{\prime}}}_{2} } \right\|^{2} < P_{0} - P_{1} \) is impossible. This completes the proof.

Appendix 2: Derivation of Lemma 2

Before proceeding, we denote the objective function of (15) as \( H(P_{R} ) \). It is easy to see that the problem of (15) is an optimization problem of a single \( P_{R} \) variable, and the maximum is achieved at one of the following points: 0, \( P_{0} - P_{1} \) and the points with zero derivative of \( H(P_{R} ) \)\( \left( {H^{\prime}(P_{R} ) = 0} \right). \) And we have the following property w.r.t. \( H^{\prime}(P_{R} ). \)

Property 1

Whenever function \( H^{\prime}(P_{R} ) \) crosses the value 0 at any point belongs to \( [0,P_{0} - P_{1} ], \) we must have \( H^{\prime\prime}(P_{R} ) < 0 \) at this point.

Proof

The first- and the second-derivatives of \( H(P_{R} ) \) are respectively given by

$$ H^{\prime}(P_{R} ) = \frac{d}{{dP_{R} + 1}} - \frac{es}{{\left( {\left( {e - mf - f} \right)P_{R} + sm + s} \right)\left( {s - fP_{R} } \right)}} $$
(22)
$$ H^{\prime\prime}(P_{R} ) = - \frac{{d^{2} }}{{(dP_{R} + 1)^{2} }} + {\kern 1pt} {\kern 1pt} \frac{{es(2mf^{2} P_{R} - 2efP_{R} + 2f^{2} P_{R} - 2mfs + es - 2fs)}}{{\left( {\left( {e - mf - f} \right)P_{R} + sm + s} \right)^{2} \left( {s - fP_{R} } \right)^{2} }} $$
(23)

and hence

$$ H^{\prime}(0) = d - \frac{e}{(sm + s)} $$
(24)
$$ H^{\prime}(P_{0} - P_{1} ) = \frac{d}{{d(P_{0} - P) + 1}} - \frac{es}{{\left( {\left( {e - mf - f} \right)\left( {P_{0} - P} \right) + sm + s} \right)\left( {s - f\left( {P_{0} - P} \right)} \right)}} $$
(25)

If \( H^{\prime}(P_{R}^{*} ) = 0 \) with \( P_{R}^{*} \in [0,P_{0} - P_{1} ], \) then we have

$$ H^{\prime\prime}(P_{R}^{*} ) = \frac{2esf}{{\left( {\left( {m + 1} \right)\left( {fP_{R}^{*} - s} \right) - eP_{R}^{*} } \right)\left( {fP_{R}^{*} - s} \right)^{2} }}. $$
(26)

Note that \( fP_{R}^{*} - s \le f(P_{0} - P_{1} ) - ((P_{0} - P_{1} )f + 1) < 0, \) then we must have \( H^{\prime\prime}(P_{R}^{*} ) < 0. \) This completes the proof. Based on the above property, we could also have the following result stated in Property 2.

Property 2

\( H^{\prime}(P_{R} ) \) could only have the following behaviors over \( P_{R} \in [0,P_{0} - P_{1} ] \)

  1. i.

    If \( H^{\prime}(P_{R} ) \) cross the value 0 at point \( P_{R}^{*} \in [0,P_{0} - P_{1} ], \) \( P_{R}^{*} \) must be unique. And for \( P_{R} \in [0,P_{R}^{*} ], \) we have \( H^{\prime}(P_{R} ) > 0; \) for \( P_{R} \in [P_{R}^{*} ,P_{0} - P_{1} ], \) we have \( H^{\prime}(P_{R} ) < 0. \)

  2. ii.

    If \( H^{\prime}(P_{R} ) \) does not cross the value 0 at all, \( H^{\prime}(P_{R} ) > 0 \) or \( H^{\prime}(P_{R} ) < 0 \) in \( [0,P_{0} - P_{1} ]. \)

Proof

First, we claim that if \( H^{\prime}(P_{R} ) \) crosses the value 0, it can cross the value 0 at most once. To see why this is the case, we should note that \( H^{\prime}(P_{R} ) \) is quadratic w.r.t \( P_{R} , \) it cannot cross value 0 more than twice. Thus, we assume that \( H^{\prime}(P_{R} ) \) crosses the value 0 twice at the two points \( 0 \le P_{R}^{*} < \tilde{P}_{R}^{*} \le P_{0} - P_{1} . \) From Property 1, we know that \( H^{\prime\prime}(P_{R}^{*} ) < 0 \) and \( H^{\prime\prime}(\tilde{P}_{R}^{*} ) < 0 \). According to the continuity of \( H^{\prime}(P_{R} ) \), there exists a very small \( \sigma > 0 \) such that \( H^{\prime}(P_{R}^{*} + \sigma ) < 0 \) and \( H^{\prime}(\tilde{P}_{R}^{*} - \sigma ) > 0 \). From the intermediate value theorem, we know that there is at least another one point \( \bar{P}_{R}^{*} \in \left[ {P_{R}^{*} ,\tilde{P}_{R}^{*} } \right] \) that makes \( H^{\prime}(\bar{P}_{R}^{*} ) = 0 \) and \( H^{\prime\prime}(\bar{P}_{R}^{*} ) > 0 \) (otherwise \( H^{\prime}(P_{R} ) \) cannot cross value 0), which contradicts the assumption that \( H^{\prime}(P_{R} ) \) crosses value 0 twice and Property 1. Therefore it should cross 0 exactly once. If \( H^{\prime}(P_{R} ) \) crosses the value 0 at point \( P_{R}^{*} \in [0,P_{0} - P_{1} ] \), because \( H^{\prime\prime}(P_{R}^{*} ) < 0 \), we know that \( H^{\prime}(P_{R} ) > 0 \) for \( P_{R} \in [0,P_{R}^{*} ] \) and \( H^{\prime}(P_{R} ) < 0 \) for \( P_{R} \in [P_{R}^{*} ,P_{0} - P_{1} ] \).

If \( H^{\prime}(P_{R} ) \) does not cross the value 0 at all, it is obviously that \( H^{\prime}(P_{R} ) > 0 \) or \( H^{\prime}(P_{R} ) < 0 \) in \( [0,P_{0} - P_{1} ] \). This completes the proof of Property 2.

If \( H^{\prime}(0) > 0 \) and \( H^{\prime}(P_{0} - P_{1} ) < 0 \), according to Property 2 (i) \( H^{\prime}(P_{R} ) \) crosses the value 0 at the unique point \( P_{R}^{*} \in [0,P_{0} - P_{1} ] \), \( H^{\prime}(P_{R} ) > 0 \), i.e., \( H(P_{R} ) \) is increasing for \( P_{R} \in [0,P_{R}^{*} ] \), and \( H^{\prime}(P_{R} ) < 0 \), i.e., \( H(P_{R} ) \) is decreasing for \( P_{R} \in [P_{R}^{*} ,P_{0} - P_{1} ] \), so \( H(P_{R} ) \) attains its maximum at \( P_{R} = P_{R}^{*} \). To obtain the exact value of \( P_{R}^{*} \), let \( H^{\prime}(P_{R} ) = 0 \), and we get an equation

$$ A_{1} (P_{R} )^{2} + B_{1} P_{R} + C_{1} = 0. $$
(27)

The solution to (27) is \( \frac{{ - B_{1} \pm \sqrt {B_{1}^{2} - 4A_{1} C_{1} } }}{{2A_{1} }} \), while \( \frac{{ - B_{1} }}{{2A_{1} }} = \frac{{2\left[ {1 + f\left( {P_{0} - P_{1} } \right)} \right]}}{f - g} \ge 2\left( {\frac{1}{f} + P_{0} - P_{1} } \right), \) thus \( P_{R}^{*} = \frac{{ - B_{1} - \sqrt {B_{1}^{2} - 4A_{1} C_{1} } }}{{2A_{1} }} \) should be the only choice. This means if \( H^{\prime}(0) > 0 \) and \( H^{\prime}(P_{0} - P_{1} ) < 0 \), the solution of (15) is \( G(P_{S} ) = \frac{{ - B_{1} - \sqrt {B_{1}^{2} - 4A_{1} C_{1} } }}{{2A_{1} }} \).

If \( H^{\prime}(0) < 0 \) and \( H^{\prime}(P_{0} - P_{1} ) > 0 \), there must be a point \( P_{R}^{*} \in [0,P_{0} - P_{1} ] \) with \( H^{\prime}(P_{R}^{*} ) = 0 \) that makes \( H^{\prime\prime}(P_{R}^{*} ) > 0 \), which contradicts with Property 1, thus this case is impossible.

If \( H^{\prime}(P_{0} - P_{1} ) > 0 \) and \( H^{\prime}(0) > 0 \), it is obviously \( H^{\prime}(P_{R} ) \) cannot crosses value 0 exactly once, according to Property 2, we can obtain that \( H^{\prime}(P_{R} ) > 0 \), i.e., \( H(P_{R} ) \) is strictly increasing on \( [0,P_{0} - P_{1} ] \), and its maximum happens to be \( H(P_{0} - P_{1} ) \), i.e., \( G(P_{S} ) = P_{0} - P_{1} \).

Similarly, if \( H^{\prime}(P_{0} - P_{1} ) < 0 \) and \( H^{\prime}(0) < 0 \), we can obtain that \( H^{\prime}(P_{R} ) < 0 \), i.e., \( H(P_{R} ) \) is strictly decreasing on \( [0,P_{0} - P_{1} ] \). The maximum value is \( H(0) = \frac{1}{1 + m} < 1 \), which implies that the secrecy rate is negative. In this case, the security of the system cannot be guaranteed.

This completes the proof.

Appendix 3: Derivation of Lemma 3

Now we first show \( J_{2} (P_{S} ) \) is a strictly decreasing function of \( P_{S} \).

If \( G(P_{S} ) = P_{0} - P_{1} , \) then \( J_{2} (P_{S} ) = \frac{{1 + d(P_{0} - P_{1} )}}{{1 + m + e(P_{0} - P_{1} )}}. \) It is easy to see that \( J_{2} (P_{S} ) \) decreases with \( m \). Since \( m \) increases with \( P_{S} \), then \( J_{2} (P_{S} ) \) is decreasing function of \( P_{S} \).

If \( G(P_{S} ) = 0 \), then \( J_{2} (P_{S} ) = \frac{1}{1 + m} \). Thus in this case \( J_{2} (P_{S} ) \) is still a decreasing function of \( P_{S} \).

Finally, if \( G(P_{S} ) = \frac{{ - B_{1} - \sqrt {B_{1}^{2} - 4A_{1} C_{1} } }}{{2A_{1} }} \), substituting (18b)–(18d) into (17), we can transform \( g \) into a function of \( G(P_{S} ) \).

$$ g = \frac{{d(1 + fP_{2} - fG\text{(}P_{S} \text{)})^{2} }}{{1 + fP_{2} + dfG\text{(}P_{S} \text{)}^{2} }} $$
(28)

where \( P_{2} = P_{0} - P_{1} \). We now have

$$ J_{2} (P_{S} ) = \frac{{1 + dG\text{(}P_{S} \text{)}}}{{\frac{e}{g} + \frac{{eG\text{(}P_{S} \text{)}}}{{1 + (P_{2} - G\text{(}P_{S} \text{)})f}}}} $$
(29)

Substitue (28) into (29), we can further obtain

$$ \begin{aligned} & J_{2} (P_{S} ) \\ & {\kern 1pt} {\kern 1pt} = \frac{{1 + dG\text{(}P_{S} \text{)}}}{{e\left( {\frac{{1 + fP_{2} + dfG\text{(}P_{S} \text{)}^{2} }}{{d\left( {1 + fP_{2} - fG\text{(}P_{S} \text{)}} \right)}} + \frac{G}{{1 + fP_{2} - fG\text{(}P_{S} \text{)}}}} \right)}} \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} & = \frac{{d(1 + fP_{2} - fG\text{(}P_{S} \text{)})^{2} }}{{e(1 + fP_{2} )}}. \\ \end{aligned} $$
(30)

Since \( G\text{(}P_{S} \text{)} \in [0,P_{2} ] \), \( J_{2} (P_{S} ) \) monotonically increases with \( G(P_{S} ) \), and we know that \( G(P_{S} ) \) decreases with \( P_{S} \). As a result, \( J_{2} (P_{S} ) \) decreases with \( P_{S} \).

From the above three cases, we conclude that \( J_{2} (P_{S} ) \) is strictly decreasing and thus quasi-concave. Due to the convexity of \( J_{1} (P_{S} ) \) with fixed \( P_{1} \), \( J(P_{S} ) \) is a point-wise minimum of a family of affine functions, as a result quasi-concave [30]. And its maximum value can be obtained via a bisection method. This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Zhang, J., Zhao, H. et al. Joint Relay Selection and Destination Assisted Cooperative Jamming with Power Allocation for Secure DF Relay Network. Int J Wireless Inf Networks 26, 201–211 (2019). https://doi.org/10.1007/s10776-019-00442-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-019-00442-x

Keywords

Navigation