Skip to main content
Log in

Recursive Updating Algorithm for Robust Adaptive Beamforming in a Uniform Circular Array

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

When the phase-mode transformation technique is used in a uniform circular array, its output performance is known to degrade owing to the approximations applied to the formulation. In this paper, we develop a robust recursive updating algorithm based on the worst-case performance optimization and phase-mode transformation in the uniform circular array, which provides efficient robustness not only against the signal steering vector mismatches, but also against the transformation errors. The proposed algorithm belongs to the class of the diagonal loading technique and the transformation matrix belongs to a certain ellipsoid set. The weight vector is updated by the Lagrange multiplier method, in which the parameters are derived simply. The proposed algorithm has a closed-form solution, in which we analyse the reasonable ranges of two key parameters. The convergence performance and the output SINR performance are also analysed. In additional, the implementation complexity costs of the proposed algorithm and MVDR algorithm are presented in this paper. Our robust algorithm has a low implementation complexity cost and achieves the mean output array SINR consistently close to the optimal one. Simulation results are presented to compare the performances of our algorithm with the conventional algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Mohsen, K. Mahmood and A. Zakiyeh, Robust beamforming in circular arrays using phase-mode transformation, IET Signal Processing, Vol. 7, pp. 693–703, 2013.

    Article  Google Scholar 

  2. M. Askar, and M. Karimi, Quadratically constrained beamforming applied to UCA. In Twentieth Iranian Conference on Electrical Engineering, Vol. 5, pp. 1178–1183 (2012).

  3. A. B. Gershman, E. Nemeth and J. F. Bohme, Experimental performance of adaptive beamforming in a sonar environment with a towed array and moving interfering sources, IEEE Transactions on Signal Processing, Vol. 48, pp. 246–250, 2000.

    Article  Google Scholar 

  4. W. Zhang, J. Wang and S. L. Wu, Adaptive multiple-input multiple-output radar beamforming based on direct data domain approach, IET Radar, Sonar & Navigation, Vol. 8, pp. 632–638, 2014.

    Article  Google Scholar 

  5. J. Li and P. Stoica, Robust Adaptive Beamforming, WileyNew York, 2005.

    Book  Google Scholar 

  6. A. E. A. Blomberg, A. Austeng, R. E. Hansen and S. A. V. Synnes, Improving sonar performance in shallow water using adaptive beamforming, IEEE Journal of Oceanic Engineering, Vol. 38, pp. 297–307, 2013.

    Article  Google Scholar 

  7. X. Jiang, W. J. Zeng, A. Yasotharan, H. C. So and T. Kirubarajan, Robust beamforming by linear programming, IEEE Transactions Signal Processing, Vol. 62, pp. 1834–1849, 2014.

    Article  MathSciNet  Google Scholar 

  8. J. L. Yu and C. C. Yeh, Generalized eigenspace-based beamformers, IEEE Transaction on Signal Processing, Vol. 43, pp. 2453–2461, 1995.

    Article  Google Scholar 

  9. J. Foutz, A. Spanias, S. Bellofiore and C. A. Balanis, Adaptive eigen-projection beamforming algorithms for 1D and 2D antenna arrays, IEEE Antennas and Wireless Propagation Letters, Vol. 2, pp. 62–65, 2003.

    Article  Google Scholar 

  10. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, WileyNew York, 1980.

    Google Scholar 

  11. L. Zhang, W. Liu and R. J. Langley, A class of constrained adaptive beamforming algorithms based on uniform linear arrays, IEEE Transactions on Signal Processing, Vol. 58, pp. 3916–3922, 2010.

    Article  MathSciNet  Google Scholar 

  12. B. D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays, IEEE Transactions on Aerospace and Electronic Systems, Vol. 24, pp. 397–401, 1988.

    Article  Google Scholar 

  13. S. J. Kim, A. Magnani, A. Mutapcic, S. P. Boyd and Z. Q. Luo, Robust beamforming via worst-case SINR maximization, IEEE Transactions on Signal Processing, Vol. 56, pp. 1539–1547, 2008.

    Article  MathSciNet  Google Scholar 

  14. S. A. Vorobyov, H. Chen and A. B. Gershman, On the relationship between robust minimum variance beamformers with probabilistic and worst-case distortionless response constraints, IEEE Transactions on Signal Processing, Vol. 56, pp. 5719–5724, 2008.

    Article  MathSciNet  Google Scholar 

  15. A. Khabbazibasmenj, S. A. Vorobyov and A. Hassanien, Robust adaptive beamforming based on steering vector estimation with as little as possible prior information, IEEE Transactions on Signal Processing, Vol. 60, pp. 2974–2987, 2012.

    Article  MathSciNet  Google Scholar 

  16. B. Liao, C. T. Guo, L. Huang, Q. Li and H. C. So, Robust adaptive beamforming with precise main beam control, IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, pp. 345–356, 2017.

    Article  Google Scholar 

  17. M. Rubsamen and A. B. Gershman, Robust adaptive beamforming using multidimensional covariance fitting, IEEE Transactions on Signal Processing, Vol. 60, pp. 740–753, 2012.

    Article  MathSciNet  Google Scholar 

  18. B. Liao, S. C. Chan and K. M. Tsui, Recursive steering vector estimation and adaptive beamforming under uncertainties, IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, pp. 489–501, 2013.

    Article  Google Scholar 

  19. L. C. Godara, Application of antenna arrays to mobile communication, Part Π: Beam-forming and direction-of-arrival considerations, Proceedings of the IEEE, Vol. 85, pp. 1213–1216, 1997.

    Google Scholar 

  20. S. A. Vorobyov, A. B. Gershman and Z. Q. Luo, Robust adaptive beamforming using worst-case performance optimization via Second-Order Cone programming. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp. 2901–2904 (2002).

  21. S. Shahbazpanahi, A. B. Gershman, Z. Q. Luo and K. M. Wong, Robust adaptive beamforming for general-rank signal models, IEEE Transactions Signal Processing, Vol. 51, pp. 2257–2269, 2003.

    Article  Google Scholar 

  22. M. Wax and J. Sheinvald, Direction finding of coherent signals via spatial smoothing for uniform circular arrays, IEEE Transactions on Antennas and Propagation, Vol. 42, pp. 613–620, 1994.

    Article  Google Scholar 

  23. A. Elnashar, Efficient implementation of robust adaptive beamforming based on worst-case performance optimization, IET Signal Processing, Vol. 2, pp. 381–393, 2008.

    Article  Google Scholar 

  24. A. Elnashar, S. Elnoubi and H. Elmikati, Further study on robust adaptive beamforming with optimum diagonal loading, IEEE Transactions on Antennas and Propagation, Vol. 54, pp. 3647–3658, 2006.

    Article  Google Scholar 

  25. S. Attallah and K. Abed-Meraim, Fast algorithms for subspace tracking, IEEE Transactions Signal Processing Letter, Vol. 8, pp. 203–206, 2006.

    Article  Google Scholar 

  26. P. Stoica, J. Li, X. Zhu and J. R. Guerci, On using a priori knowledge in space-time adaptive processing, IEEE Transactions on Signal Processing, Vol. 56, pp. 2598–2602, 2008.

    Article  MathSciNet  Google Scholar 

  27. L. Du, J. Li and P. Stoica, Fully automatic computation of diagonal loading levels for robust adaptive beamforming, IEEE Journal & Magazines, Vol. 46, pp. 449–458, 2010.

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their insightful comments that helped improve the quality of this study. This work was supported by the National Nature Science Foundation of China under Grant no. 61473066 and no. 61601109, and the Fundamental Research Funds for the Central Universities under Grant No. N152305001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A. The Ellipsoid Set Covering \({\varvec{U}}\)

The first part of the array correlation matrix \({\varvec{U}}\) is given by

$$\begin{aligned} {\varvec{U}}_{1} & = \Delta {\varvec{G\hat{R}}}_{xx} {\varvec{Z}}^{H} \Delta {\varvec{Q}}^{H} \\ & = \left[ {\begin{array}{*{20}l} {z_{ - \nu } {\varvec{v}}_{ - \nu }^{H} {\hat{\varvec{R}}}_{xx} z_{ - \nu }^{ * } {\varvec{v}}_{ - \nu } } & \cdots & {z_{ - \nu } {\varvec{v}}_{ - \nu }^{H} {\hat{\varvec{R}}}_{xx} z_{\nu }^{ * } {\varvec{v}}_{\nu } } \\ \vdots & \ddots & \vdots \\ {z_{\nu } {\varvec{v}}_{\nu }^{H} {\hat{\varvec{R}}}_{xx} z_{ - \nu }^{ * } {\varvec{v}}_{ - \nu } } & \cdots & {z_{\nu } {\varvec{v}}_{\nu }^{H} {\hat{\varvec{R}}}_{xx} z_{\nu }^{ * } {\varvec{v}}_{\nu } } \\ \end{array} } \right] \\ \end{aligned}$$
(65)

where the diagonal error matrix \(\Delta {\varvec{G}}\) and the matrix \({\varvec{Z}}\) are written in the following form for simplicity

$${\varvec{Z}} = \left[ {\begin{array}{*{20}c} {{\varvec{v}}_{ - \nu }^{H} } \\ {{\varvec{v}}_{ - \nu + 1}^{H} } \\ \vdots \\ {{\varvec{v}}_{\nu - 1}^{H} } \\ {{\varvec{v}}_{\nu }^{H} } \\ \end{array} } \right],\quad \Delta {\varvec{G}} = \left[ {\begin{array}{*{20}c} {z_{ - \nu } } & \cdots & {\varvec{0}} \\ \vdots & \ddots & \vdots \\ {\varvec{0}} & \cdots & {z_{\nu } } \\ \end{array} } \right]$$
(66)

where the each \(z_{i}\) must satisfy the inequation \(\left| {z_{i} } \right| \le \delta_{{i,\text{ }}} (i = - \nu , \ldots ,\nu )\).

The \(i{\text{th}}\) column of (65) is equal to

$${\varvec{g}}_{1,i} = z_{ - \nu + i - 1}^{ * } \Delta {\varvec{G\hat{R}}}_{xx} {\varvec{v}}_{ - \nu + i - 1}$$
(67)

We consider the fact that the upper bound of \(z_{i}\) is the following inequation

$$\vartheta (\Delta {\varvec{G}}\Delta {\varvec{G}}^{H} ) \le { \text{max} }\left\{ {\delta_{i}^{2} ,i = - \nu , \ldots ,\nu } \right\}$$
(68)

It is shown that the vector \({\varvec{g}}_{1,i}\) belongs to the following ellipsoid set

$$\begin{aligned} {\varvec{F}}_{1,i} ({\varvec{0}},{\varvec{T}}_{1,i} ) & = \left\{ {{\varvec{T}}_{1,i}^{1/2} {\varvec{\upupsilon}}|\text{ }\left\| {\varvec{\upupsilon}} \right\| \le 1} \right\} \hfill \\ {\varvec{T}}_{1,i}^{1/2} & = \delta_{ - \nu + i - 1} \varepsilon {\hat{\varvec{R}}}_{xx} \hfill \\ \end{aligned}$$
(69)

where the parameter \(\varepsilon^{2}\) can be chosen as

$$\varepsilon^{2} = { \text{max} }\{ \delta_{i}^{2} ,\text{ }i = - \nu , \ldots ,\nu \}$$
(70)

The second part of the array correlation matrix is \({\varvec{U}}_{2} = \Delta {\varvec{G\hat{R}}}_{xx} {\varvec{G}}_{0}^{H}\), and we can write the \(i{\text{th}}\) column of the matrix \({\varvec{U}}_{2}\) as

$${\varvec{g}}_{2,i} = \Delta {\varvec{G\hat{R}}}_{xx} {\varvec{v}}_{ - \nu + i - 1} {\varvec{Q}}_{ - \nu + i - 1}^{ * }$$
(71)

We can conclude that the vector \({\varvec{g}}_{2,i}\) belongs to the ellipsoid set [1]

$$\begin{aligned} {\varvec{F}}_{2,i} ({\varvec{0}},{\varvec{T}}_{2,i} ) & = \left\{ {{\varvec{T}}_{2,i}^{1/2} {\varvec{\upupsilon}}|\text{ }\left\| {\varvec{\upupsilon}} \right\| \le 1} \right\} \hfill \\ {\varvec{T}}_{2,i}^{1/2} & = \varepsilon \left| {{\varvec{Q}}_{ - \nu + i - 1} } \right|{\hat{\varvec{R}}}_{xx} \hfill \\ \end{aligned}$$
(72)

Similarly, we can conclude that the third part \({\varvec{U}}_{3} = {\varvec{G}}_{0}^{{}} {\hat{\varvec{R}}}_{xx} \Delta {\varvec{G}}^{H}\) belongs to the ellipsoid set

$$\begin{aligned} {\varvec{F}}_{3,i} ({\varvec{0}},{\varvec{T}}_{3,i} ) & = \left\{ {{\varvec{T}}_{3,i}^{1/2} {\varvec{\upupsilon}}|\text{ }\left\| {\varvec{\upupsilon}} \right\| \le 1} \right\} \hfill \\ {\varvec{T}}_{3,i}^{1/2} & = \delta_{ - \nu + i - 1} {\varvec{G}}_{0} {\hat{\varvec{R}}}_{xx} \hfill \\ \end{aligned}$$
(73)

1.2 B. The Detailed Proof of (24)

Proof

For an arbitrary \({\varvec{w}}\), we can prove that

$${\varvec{w}}^{H} \left( {\beta^{2} \Delta {\varvec{G}}\Delta {\varvec{G}}^{H} - \Delta {\varvec{Gaa}}^{H} \Delta {\varvec{G}}^{H} } \right){\varvec{w}} \ge 0,\text{ }\forall {\varvec{w}}$$
(74)

The inequality (74) is rewritten as

$${\varvec{w}}^{H} \Delta {\varvec{G}}\left( {\beta^{2} {\varvec{I}} - {\varvec{aa}}^{H} } \right)\Delta {\varvec{G}}^{H} {\varvec{w}} \ge 0,\text{ }\forall {\varvec{w}}$$
(75)

We can derive (75) as

$$\begin{aligned} & {\hat{\varvec{w}}}_{b}^{H} \left( {\beta^{2} {\varvec{I}} - {\varvec{aa}}^{H} } \right){\hat{\varvec{w}}}_{b} \ge 0,\text{ }\forall {\hat{\varvec{w}}}_{b} \hfill \\ & \Rightarrow \left\| {{\hat{\varvec{w}}}_{b}^{H} {\varvec{a}}} \right\| \le \beta \left\| {{\hat{\varvec{w}}}_{b} } \right\| \hfill \\ \end{aligned}$$
(76)

where the vector \({\hat{\varvec{w}}}_{b} = \Delta {\varvec{G}}^{H} {\varvec{w}}\).

Considering (76) for Euclidean norm, it is easy that we can conclude the inequality

$$\left\| {{\hat{\varvec{w}}}_{b}^{H} {\varvec{a}}} \right\| \le \left\| {{\hat{\varvec{w}}}_{b} } \right\|\left\| {\varvec{a}} \right\| = \beta \left\| {{\hat{\varvec{w}}}_{b} } \right\|$$
(77)

Therefore, the inequality (24) is true.

1.3 C. The Derivation of the Lagrange Multiplier \(l\)

The quadratic constraint of the optimization problem (28) is written as

$$h({\hat{\varvec{w}}}) = \text{ }1$$
(78)

where

$$h({\hat{\varvec{w}}}) = {\hat{\varvec{w}}}^{H} (k)\left( {\xi^{2} {\varvec{I}} - {\varvec{dd}}^{H} } \right){\hat{\varvec{w}}}(k) + {\varvec{d}}^{H} {\hat{\varvec{w}}}(k) + \text{ }{\hat{\varvec{w}}}^{H} (k){\varvec{d}}$$
(79)

Inserting (31) into (78), we can obtain the Lagrange multiplier \(l\) as

$$l = \frac{1}{{2u^{2} \left[ {{\varvec{J}}^{H} (k)(\xi^{2} {\varvec{I}} - {\varvec{dd}}^{H} ){\varvec{J}}(k)} \right]}}\left( {\zeta (k) + \rho (k)} \right)$$
(80)

where

$$\begin{aligned} {\varvec{J}}(k) & = \left( {\xi^{2} {\varvec{I}} - {\varvec{dd}}^{H} } \right){\hat{\varvec{w}}}(k) + {\varvec{d}} \hfill \\ \zeta (k) & = u\left[ {{\varvec{q}}^{H} (k)\left( {\xi^{2} {\varvec{I}} - {\varvec{dd}}^{H} } \right){\varvec{J}}(k) + \varepsilon^{2} {\varvec{J}}^{H} (k){\varvec{Iq}}(k)} \right] \hfill \\ & \quad + u{\varvec{J}}^{H} (k){\varvec{d}} + {\varvec{d}}^{H} {\varvec{J}}(k) - u{\varvec{J}}^{H} (k){\varvec{dd}}^{H} {\varvec{q}}(k) \hfill \\ \rho^{\text{H}} (k)\rho (k) & = \zeta^{H} (k)\zeta (k) - 4u^{2} {\varvec{J}}^{H} (k)\left( {\xi^{2} {\varvec{I}} - {\varvec{dd}}^{H} } \right) \hfill \\ & \quad \cdot {\varvec{J}}(k)\left( {\phi (k) - 1} \right) \hfill \\ \phi (k) & = {\varvec{q}}^{H} (k)\left( {\xi^{2} {\varvec{I}} - {\varvec{dd}}^{H} } \right){\varvec{q}}(k) + {\varvec{q}}^{H} (k){\varvec{d}} + {\varvec{d}}^{H} {\varvec{q}}(k) \hfill \\ \end{aligned}$$
(81)

In (39), \({\varvec{q}}(k) = [{\varvec{I}} - u{\varvec{U}}]{\hat{\varvec{w}}}(k)\).

From the Eqs. (80) and (81), we note that the solving process of the parameter \(l\) is very complicated. To decrease the computation cost, we can simply compute \(l\) by the linear combination method. According to [26], we consider a linear combination with the form

$${\hat{\varvec{U}}}_{d} = \gamma \varvec{I} + \eta {\hat{\varvec{G}}}$$
(82)

where \({\hat{\varvec{U}}} = \left( {{\varvec{G}}_{0} + \Delta {\varvec{G}}} \right)\left( {\varvec{R}_{\varvec{N}} + r{\varvec{I}}} \right)\left( {{\varvec{G}}_{0} + \Delta {\varvec{G}}} \right)^{H}\), \(\gamma > 0\), and \(\eta > 0\).

Then, we can obtain the enhanced covariance matrix as

$${\varvec{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{U} }} = {\hat{\varvec{U}}} + \frac{\gamma }{\eta }\varvec{\rm I}$$
(83)

Contrasting the diagonal loading covariance matrix \({\hat{\varvec{U}}} + l\xi^{2} {\varvec{\rm I}}\) in (33) and \({\hat{\varvec{U}}} + \frac{\gamma }{\eta }{\varvec{\rm I}}\) in (83), we derive that the loading factor \(l\xi^{2}\) can be replaced by \({\gamma \mathord{\left/ {\vphantom {\gamma \eta }} \right. \kern-0pt} \eta }\). In this way, we can obtain the parameter \(l\) as

$$l = \frac{\gamma }{\eta } \cdot \frac{1}{{\xi^{2} }}$$
(84)

Contrasting (80) and (84), the proposed algorithm can decrease the complexity cost. Next, we must get the parameters \(\gamma\) and \(\eta\) by minimizing the mean squared error (MSE) of \({\hat{\varvec{U}}}_{d}\) as

$$f = { \text{min} }\,E\left\{ { \, \left\| {{\hat{\varvec{U}}}_{d} - {\varvec{U}}} \right\|^{2} } \right\}$$
(85)

The minimization problem is derived as [27]

$$\begin{aligned} f & = E\left\{ {\left\| {\gamma \varvec{\rm I} - \left( {1 - \eta } \right){\varvec{U}} + \eta \left( {{\hat{\varvec{U}}} - {\varvec{U}}} \right)} \right\|^{2} } \right\} \\ &= \left\| {\gamma \varvec{\rm I} - \left( {1 - \eta } \right){\varvec{U}}} \right\|^{2} + \eta^{2} E\left\{ {\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2} } \right\} \\ &= \gamma^{2} M - 2\gamma \left( {1 - \eta } \right)tr({\varvec{U}}) + \left( {1 - \eta } \right)^{2} \left\| {\varvec{U}} \right\|^{2} + \eta^{2} E\left\{ {\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2} } \right\} \\ \end{aligned}$$
(86)

By minimizing (86) with respect to \(\gamma\), we can obtain the optimal \(\gamma_{0}\) for fixed \(\eta\) as

$$\gamma_{0} = \frac{{\left( {1 - \eta_{0} } \right) \, tr\left( {\varvec{U}} \right)}}{M}$$
(87)

Inserting \(\gamma_{0}\) into (86) and replacing \(\eta_{0}\) by \(\eta\), we give another unconstrained minimization problem

$$\mathop { \text{min} }\limits_{\eta } \, \frac{{\left( {1 - \eta } \right)^{2} \left\{ {\left\| {\varvec{U}} \right\|^{2} M - tr^{2} \left( {\varvec{U}} \right)} \right\}}}{M} + \eta^{2} E\left\{ {\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2} } \right\}$$
(88)

Computing the gradient of (88) and equating it to zero yields the optimal solution for \(\eta\) as

$$\eta_{0} = \frac{\alpha }{\alpha + \chi }$$
(89)

where \(\alpha = \frac{{\left\| {\varvec{U}} \right\|^{2} M - tr^{2} \left( {\varvec{U}} \right)}}{M},\quad \chi = E\left\{ {\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2} } \right\}\)

To estimate \(\gamma_{0}\) and \(\eta_{0}\) from the received available data, we need to obtain the estimation values for \(\chi\) and \(\alpha\). In practice, the exact array correlation matrix \({\varvec{U}}\) is unavailable. Therefore, \({\varvec{U}}\) is replaced by \({\hat{\varvec{U}}}\) to estimate \(\alpha\) as

$$\hat{\alpha } = \frac{{\left\| {{\hat{\varvec{U}}}} \right\|^{2} M - tr^{2} \left( {{\hat{\varvec{U}}}} \right)}}{M}$$
(90)

Let \(\hat{r}_{m}\) and \(r_{m}\) denote the \(m{\text{th}}\) columns of \({\hat{\varvec{U}}}\) and \({\varvec{U}}\), respectively. We have

$$E\left\{ {\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2} } \right\} = \sum\limits_{m = 1}^{M} {E\left\{ { \, \left\| {\hat{r}_{m} - r_{m} } \right\|^{2} } \right\}}$$
(91)

Alternatively, we can use the unbiased estimate \(\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2}\) for \(E\left\{ {\left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2} } \right\}\).

Thereby, we can estimate \(\chi\) as [26]

$$\hat{\chi } = \left\| {{\hat{\varvec{U}}} - {\varvec{U}}} \right\|^{2}$$
(92)

Applying (90) and (92), we can derive the estimation values for \(\gamma_{0}\) and \(\eta_{0}\), respectively

$$\hat{\gamma }_{0} = \frac{{\left( {1 - \hat{\eta }_{0} } \right) \, tr\left( {\hat{\varvec{U}}} \right)}}{M}$$
(93)

and

$$\hat{\eta }_{0} = \frac{{\hat{\alpha }}}{{\hat{\alpha } + \hat{\chi }}}$$
(94)

Finally, the diagonal loading factor \(\lambda \xi^{2}\) is replaced by the estimation ratio \({{\hat{\gamma }_{0} } \mathord{\left/ {\vphantom {{\hat{\gamma }_{0} } {\hat{\eta }}}} \right. \kern-0pt} {\hat{\eta }}}_{0}\). Thus we can obtain the expression of the Lagrange multiplier \(l\) as

$$\hat{l} = \frac{{\hat{\gamma }_{0} }}{{\hat{\eta }_{0} }} \cdot \frac{1}{{\xi^{2} }}.$$
(95)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Han, X., Wang, F. et al. Recursive Updating Algorithm for Robust Adaptive Beamforming in a Uniform Circular Array. Int J Wireless Inf Networks 26, 331–343 (2019). https://doi.org/10.1007/s10776-019-00449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-019-00449-4

Keywords

Navigation