Skip to main content
Log in

Internet of Things Management Based on Software Defined Networking: A Survey

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Nowadays, the huge number of smart connected objects and the massive data amount produced require intelligent approaches for their management and supervision. Accordingly, Software Defined Networking (SDN) is considered as a promising paradigm for Internet of things (IoT) management. The IoT is now involved deeply in our daily activities and influences considerably our life style; from the way we drive, to how we make purchases or even what we should eat or not to maintain our health etc. The diversity of IoT related applications necessitates flexible, agile and adaptable IoT architecture. To meet this requirement, the design of IoT architecture based on SDN involves decoupling control plane from data plane to integrating intelligent management functionalities. In this context, this survey highlights the IoT network management functionalities and studies the correlation between SDN and IoT with focuses the role played by SDN to improve the management effectiveness of IoT networks. Furthermore, deep investigation is elaborated related to the SDN-IoT architectures and applications and some open issues and future research directions are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao, A survey on internet of things: architecture, enabling technologies, security and privacy, and applications, IEEE Internet of Things Journal, Vol. 4, No. 5, pp. 1125–1142, 2017.

    Article  Google Scholar 

  2. S. Yu, M. Liu, W. Dou, X. Liu and S. Zhou, Networking for big data: A survey, IEEE Communications Surveys & Tutorials, Vol. 19, No. 1, pp. 531–549, 2017.

    Article  Google Scholar 

  3. R. Masoudi and A. Ghaffari, Software defined networks: A survey, Journal of Network and computer Applications, Vol. 67, pp. 1–25, 2016.

    Article  Google Scholar 

  4. H. I. Kobo, A. M. Abu-Mahfouz and G. P. Hancke, A survey on software-defined wireless sensor networks: Challenges and design requirements, IEEE Access, Vol. 5, pp. 1872–1899, 2017.

    Article  Google Scholar 

  5. W. Cerroni, C. Buratti, S. Cerboni, G. Davoli, C. Contoli, F. Foresta, F. Callegati, and R. Verdone, Intent-based management and orchestration of heterogeneous openflow/IoT SDN domains. in 2017 IEEE Conference on Network Softwarization (NetSoft), pp. 1–9. IEEE, New York, July 2017.

  6. N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, pp. 1–9, 2018.

  7. K. Kalkan, and S. Zeadally, Securing internet of things (IoT) with software defined networking (SDN). IEEE Communications Magazine, 2017.

  8. W. Dai, P. Wan, W. Qiang, L. T. Yang, D. Zou, H. Jin, S. Xu, and Z. Huang, TNGuard: securing iot oriented tenant networks based on SDN. IEEE Internet of Things Journal, 2018.

  9. A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, A. Khreishah, I. Khalil, M. Guizani, and A. Al-Fuqaha, A, Smart cities: a survey on data management, security and enabling technologies. IEEE Communications Surveys & Tutorials, 2017.

  10. M. Gheisariy, G. Wang, W. Z. Khanz, and C. Fernández-Campusano, A context-aware privacy-preserving method for IoT-based smart city using Software Defined Networking. Computers & Security, 2019.

  11. M. Gheisari, G. Wang, S. Chen, and H. Ghorbani, IoT-SDNPP: a method for privacy-preserving in smart city with software defined networking. in International Conference on Algorithms and Architectures for Parallel Processing, pp. 303–312, Springer, Cham, November 2018.

  12. B. L. R. Stojkoska and K. V. Trivodaliev, A review of Internet of Things for smart home: challenges and solutions, Journal of Cleaner Production, Vol. 140, pp. 1454–1464, 2017.

    Article  Google Scholar 

  13. S. Kawthankar, and S. Raut, A survey on smart automobiles using internet of things for digital India. Transportation, Vol. 3, No. 05, 2017.

  14. K. Natarajan, B. Prasath, and P. Kokila, Smart health care system using internet of things. Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org, Vol. 6, No. 3, 2016.

  15. Y. Liu, W. Han, Y. Zhang, L. Li, J. Wang and L. Zheng, An Internet-of-Things solution for food safety and quality control: a pilot project in China, Journal of Industrial Information Integration, Vol. 3, pp. 1–7, 2016.

    Article  Google Scholar 

  16. X. Fang, S. Misra, G. Xue and D. Yang, Smart grid—the new and improved power grid: asurvey, IEEE Communications Surveys & Tutorials, Vol. 14, No. 4, pp. 944–980, 2012.

    Article  Google Scholar 

  17. R. Jmal and L. C. Fourati, Content-centric networking management based on software defined networks: survey, IEEE Transactions on Network and Service Management, Vol. 14, No. 4, pp. 1128–1142, 2017.

    Article  Google Scholar 

  18. M. Gheisari, G. Wang, S. Chen, and A. Seyfollahi, A method for privacy-preserving in IoT-SDN integration environment. in 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp 895–902, IEEE, New York, December 2018.

  19. P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari and A. Puschmann, Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture, IEEE Communications Magazine, Vol. 55, No. 2, pp. 70–78, 2017.

    Article  Google Scholar 

  20. M. R. Jabbarpour, A. Nabaei, and H. Zarrabi, Intelligent guardrails: an iot application for vehicle traffic congestion reduction in smart city. in 2016 IEEE International Conference on Internet of Things (ithings) and IEEE Green Computing and Communications (greencom) and IEEE Cyber, Physical and Social Computing (cpscom) and IEEE Smart Data (smartdata), pp. 7–13, IEEE, New York, December 2016.

  21. J. M. Llopis, J. Pieczerak, and T. Janaszka, Minimizing latency of critical traffic through SDN. in 2016 IEEE International Conference on Networking, Architecture and Storage (NAS), pp. 1–6, IEEE, New York, August 2016.

  22. S. Song, J. Lee, K. Son, H. Jung, and J. Lee, A congestion avoidance algorithm in SDN environment. In 2016 International Conference on Information Networking (ICOIN), pp. 420–423, IEEE, New York, January 2016.

  23. N. Bizanis and F. A. Kuipers, SDN and virtualization solutions for the Internet of Things: a survey, IEEE Access, Vol. 4, pp. 5591–5606, 2016.

    Article  Google Scholar 

  24. S. Bera, S. Misra and A. V. Vasilakos, Software-defined networking for internet of things: a survey, IEEE Internet of Things Journal, Vol. 4, No. 6, pp. 1994–2008, 2017.

    Article  Google Scholar 

  25. Y. Li, and J. Li, (MultiClassifier: a combination of DPI and ML for application-layer classification in SDN. in The 2014 2nd International Conference on Systems and Informatics (ICSAI 2014), pp. 682–686, IEEE, New York, November 2014.

  26. F. Bannour, S. Souihi and A. Mellouk, Distributed SDN control: Survey, taxonomy, and challenges, IEEE Communications Surveys & Tutorials, Vol. 20, No. 1, pp. 333–354, 2018.

    Article  Google Scholar 

  27. N. Gude, et al., NOX: Towards an operating system for networks, ACM SIGCOMM Comput. Commun. Rev., Vol. 38, No. 3, pp. 105–110, 2008.

    Article  Google Scholar 

  28. POX, 2012, http://noxrepo.org/.

  29. D. Erickson, The beacon openflow controller. in Proc. 2nd ACM SIGCOMM Workshop Hot Topics Softw. Defined Netw., pp. 13–18, 2013.

  30. J. Medved, R. Varga, A. Tkacik, and K. Gray, Opendaylight: towards a model-driven sdn controller architecture. in 2014 IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–6, IEEE, New York, June 2014.

  31. I. Z. Bholebawa and U. D. Dalal, Performance analysis of SDN/OpenFlow controllers: POX versus floodlight, Wireless Personal Communications, Vol. 98, No. 2, pp. 1679–1699, 2018.

    Article  Google Scholar 

  32. U. Krishnaswamy, ONOS: an open source distributed SDN OS, 2013.

  33. M. A. Hakim, H. Aksu, A. S. Uluagac, and K. Akkaya, U-PoT: A Honeypot framework for UPnP-based IoT devices. in 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC), pp. 1–8, IEEE, New York, November 2018.

  34. C. Cascone, L. Pollini, D. Sanvito, and A. Capone, Traffic management applications for stateful SDN data plane. in 2015 Fourth European Workshop on Software Defined Networks, pp. 85–90, IEEE, New York, September 2015.

  35. N. Accettura, L. A. Grieco, G. Boggia,, and P. Camarda, Performance analysis of the RPL routing protocol. in 2011 IEEE International Conference on Mechatronics, pp. 767–772, IEEE, New York, April 2011.

  36. J. Tripathi, J. C. de Oliveira, and J. P. Vasseur, A performance evaluation study of rpl: Routing protocol for low power and lossy networks. in 2010 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6, IEEE, New York, March 2010.

  37. Y. Tahir, S. Yang, and J. McCann, BRPL: backpressure RPL for high-throughput and mobile IoTs. IEEE Transactions on Mobile Computing. 2017.

  38. H. Kharrufa, H. A. Al-Kashoash and A. H. Kemp, RPL-based routing protocols in IoT applications: a review, IEEE Sensors Journal, Vol. 19, No. 15, pp. 5952–5967, 2019.

    Article  Google Scholar 

  39. S. Deering, and R. Hinden, Internet protocol, version 6 (IPv6) specification (No. RFC 8200). 2017.

  40. A. Q. Moghadam, and M. Imani, A new method of IPv6 addressing based on EPC-mapping in the Internet of Things. in 2018 4th International Conference on Web Research (ICWR), pp. 92–96, IEEE, New York, April 2018.

  41. Z. Shelby, and C. Bormann, 6LoWPAN: the wireless embedded Internet, Vol. 43. Wiley, New York, 2011.

  42. T. Gomes, F. Salgado, S. Pinto, J. Cabral and A. Tavares, A 6LoWPAN accelerator for Internet of Things endpoint devices, IEEE Internet of Things Journal, Vol. 5, No. 1, pp. 371–377, 2018.

    Article  Google Scholar 

  43. E. Ferro and F. Potorti, Bluetooth and Wi-Fi wireless protocols: a survey and a comparison, IEEE Wireless Communications, Vol. 12, No. 1, pp. 12–26, 2005.

    Article  Google Scholar 

  44. R. Muhendra, A. Rinaldi and M. Budiman, Development of WiFi Mesh Infrastructure for Internet of Things Applications, Procedia Engineering, Vol. 170, pp. 332–337, 2017.

    Article  Google Scholar 

  45. M. Terán, J. Aranda, H. Carrillo, D. Mendez, and C. Parra, IoT-based system for indoor location using bluetooth low energy. in 2017 IEEE Colombian Conference on Communications and Computing (COLCOM), pp. 1–6, IEEE, New York, August 2017.

  46. J. de Carvalho Silva, J. J. Rodrigues, A. M. Alberti, P. Solic, and A. L. Aquino, LoRaWAN—a low power WAN protocol for Internet of Things: a review and opportunities. in 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), pp. 1–6, IEEE, New York, July 2017.

  47. F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-Segui and T. Watteyne, Understanding the limits of LoRaWAN, IEEE Communications Magazine, Vol. 55, No. 9, pp. 34–40, 2017.

    Article  Google Scholar 

  48. Y. T. Liu, B. Y. Lin, X. F. Yue, Z. X. Cai, Z. X. Yang, W. H. Liu, S. Y. Huang, J. L. Lu, J. W. Peng, and J. Y. Chen, A solar powered long range real-time water quality monitoring system by LoRaWAN. in Wireless and Optical Communication Conference (WOCC), 2018 27th, pp. 1–2, IEEE, New York, April 2018.

  49. P. Baronti, P. Pillai, V. W. Chook, S. Chessa, A. Gotta and Y. F. Hu, Wireless sensor networks: a survey on the state of the art and the 802.15. 4 and ZigBee standards, Computer Communications, Vol. 30, No. 7, pp. 1655–1695, 2007.

    Article  Google Scholar 

  50. A. Chaudhary, J. Rusia, K. Gourav, P. Tripathi, J. Pandey, S. Majumdar, B. Acharya, S. Majumder, and S. Verma, Design and simulation of physical layer blocks of ZigBee transmitter. in 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 347–351, IEEE, New York, February 2017.

  51. C. Gomez, and J. Paradells, Wireless home automation networks: a survey of architectures and technologies. IEEE Communications Magazine, Vol. 48, No. 6, 2010.

  52. T. Kim, A study of the Z-wave protocol: implementing your own smart home gateway. in 2018 3rd International Conference on Computer and Communication Systems (ICCCS), pp. 411–415, IEEE, New York, April 2018.

  53. G. G. Ribeiro, L. F. de Lima, L. Oliveira, J. J. Rodrigues, C. N. Marins, and G. A. Marcondes, An outdoor localization system based on SigFox. in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5, IEEE, New York, June 2018.

  54. S. Cheshire, and M. Krochmal, DNS-based service discovery (No. RFC 6763). 2013.

  55. M. Stolikj, P. J. Cuijpers, J. J. Lukkien, and N. Buchina, Context based service discovery in unmanaged networks using mDNS/DNS-SD. in 2016 IEEE International Conference on Consumer Electronics (ICCE), pp. 163–165, IEEE, New York, January 2016.

  56. A. Ismail, and W. Kastner, Discovery in SOA-governed industrial middleware with mDNS and DNS-SD. in 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA), pp. 1–8, IEEE, New York, September 2016.

  57. S. Cheshire, and M. Krochmal, Multicast dns. RFC 6762, February 2013.

  58. A. Siljanovski, A., Sehgal and J. Schönwälder, Service discovery in resource constrained networks using multicast DNS. in 2014 European Conference on Networks and Communications (EuCNC), pp. 1–5, IEEE, New York, June 2014.

  59. B. A. Miller, T. Nixon, C. Tai and M. D. Wood, Home networking with universal plug and play, IEEE Communications Magazine, Vol. 39, No. 12, pp. 104–109, 2001.

    Article  Google Scholar 

  60. Hunkeler, U., Truong, H. L., & Stanford-Clark, A. MQTT-S—a publish/subscribe protocol for wireless sensor networks. in 3rd International Conference on Communication Systems Software and Middleware and Workshops, 2008. comsware 2008, pp. 791–798, IEEE, New York, January 2008.

  61. C. Bormann, A. P. Castellani and Z. Shelby, Coap: an application protocol for billions of tiny internet nodes, IEEE Internet Computing, Vol. 16, No. 2, pp. 62–67, 2012.

    Article  Google Scholar 

  62. Z. Shelby, K. Hartke, and C. Bormann, The constrained application protocol (CoAP) (No. RFC 7252). 2014.

  63. R. H. Randhawa, A. Hameed, and A. N. Mian, Energy efficient cross-layer approach for object security of CoAP for IoT devices. Ad Hoc Networks, 2018.

  64. S. Vinoski, Advanced message queuing protocol. IEEE Internet Computing, Vol. 10, No. 6, 2006.

  65. J. L. Fernandes, I. C. Lopes, J. J. Rodrigues, and S. Ullah, Performance evaluation of RESTful web services and AMQP protocol. in 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 810–815, IEEE, New York, July 2013.

  66. G. Pardo-Castellote, Omg data-distribution service: architectural overview. in 23rd International Conference on Distributed Computing Systems Workshops, 2003. Proceedings, pp. 200–206, IEEE, New York, May 2003.

  67. W. Kang, K. Kapitanova and S. H. Son, RDDS: a real-time data distribution service for cyber-physical systems, IEEE Transactions on Industrial Informatics, Vol. 8, No. 2, pp. 393–405, 2012.

    Article  Google Scholar 

  68. P. Saint-Andre,  Extensible messaging and presence protocol (XMPP): Core (No. RFC 6120). 2011.

  69. O. Ozturk, Introduction to XMPP protocol and developing online collaboration applications using open source software and libraries. in 2010 International Symposium on Collaborative Technologies and Systems (CTS), pp.. 21–25, IEEE, New York, May 2010.

  70. C. A. L. Putera, and F. J. Lin, Incorporating OMA Lightweight M2M protocol in IoT/M2M standard architecture. in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT),  pp. 559–564, IEEE, New York, December 2015.

  71. O. M. Alliance, Lightweight machine to machine technical specification. Technical Specification OMA-TS-LightweightM2M-V1, 2013.

  72. S. Heo, S. Woo, J. Im, and D. Kim, IoT-MAP: IoT mashup application platform for the flexible IoT ecosystem. in 2015 5th International Conference on the Internet of Things (IOT), pp. 163–170, IEEE, New York, October 2015.

  73. M. Blackstock, and R. Lea, IoT mashups with the WoTKit. in 2012 3rd International Conference on the  Internet of Things (IOT), pp. 159–166, IEEE, New York, October 2012.

  74. M. Stusek, P. Masek, D. Kovac, A. Ometov, J. Hosek, F. Kröpfl, and S. Andreev, Remote management of intelligent devices: using TR-069 protocol in IoT. in 2016 39th International Conference on telecommunications and Signal Processing (TSP), pp. 74–78. IEEE, New York, June 2016.

  75. K. Zhao, and L. Ge, A survey on the internet of things security. in 2013 9th international conference on computational intelligence and security (CIS), pp. 663–667, IEEE, New York, December 2013.

  76. Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen and S. Shieh, IoT security: ongoing challenges and research opportunities. in 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (SOCA), pp. 230–234, IEEE, New York, November 2014.

  77. M. A. Khan and K. Salah, IoT security: review, blockchain solutions, and open challenges, Future Generation Computer Systems, Vol. 82, pp. 395–411, 2018.

    Article  Google Scholar 

  78. R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, Internet of things (IoT) security: current status, challenges and prospective measures. in 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), (pp. 336-341). IEEE, New York, December 2015.

  79. M.A. Khan, and K. Salah, IoT security: review, blockchain solutions, and open challenges, Future Generation Computer Systems, 2017, https://doi.org/10.1016/j.future.2017.11.022.

  80. A. Al-Hasnawi, and L. Lilien, Pushing data privacy control to the edge in IoT using policy enforcement fog module. in Companion Proceedings of the10th International Conference on Utility and Cloud Computing, pp. 145–150, December 2017.

  81. M. S. Ali, K. Dolui, and F. Antonelli, IoT data privacy via blockchains and IPFS. in Proceedings of the Seventh International Conference on the Internet of Things, pp 1–7, October 2017.

  82. C. Machado, and A. A. M. Fröhlich, IoT data integrity verification for cyber-physical systems using blockchain. in 2018 IEEE 21st International Symposium on Real-Time Distributed Computing (ISORC), pp. 83–90, IEEE, New York, May 2018.

  83. K. C. Purohit, S. Bisht, A. Joshi, and J. Bhatt, Hybrid approach for securing IoT communication using authentication and data confidentiality. in 2017 3rd International Conference on Advances in Computing, Communication & Automation (ICACCA) (Fall), pp. 1–6, IEEE, New York, September 2017.

  84. E. Valea, M. Da Silva, M. L. Flottes, G. Di Natale, S. Dupuis, and B. Rouzeyre, Providing confidentiality and integrity in ultra low power IoT devices. in 2019 14th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS), pp. 1–6. IEEE, New York, April 2019.

  85. M. T. Hammi, B. Hammi, P. Bellot and A. Serhrouchni, Bubbles of trust: a decentralized blockchain-based authentication system for IoT, Computers & Security, Vol. 78, pp. 126–142, 2018.

    Article  Google Scholar 

  86. M. El-hajj, A. Fadlallah, M. Chamoun and A. Serhrouchni, A survey of internet of things (IoT) authentication schemes, Sensors, Vol. 19, No. 5, p. 1141, 2019.

    Article  Google Scholar 

  87. A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel, A. Roger, and R. Sirdey, Towards better availability and accountability for iot updates by means of a blockchain. in 2017 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp 50–58, IEEE, New York, April 2017.

  88. S. Li, Q. Ni, Y. Sun, G. Min and S. Al-Rubaye, Energy-efficient resource allocation for industrial cyber-physical IoT systems in 5G era, IEEE Transactions on Industrial Informatics, Vol. 14, No. 6, pp. 2618–2628, 2018.

    Article  Google Scholar 

  89. T. N. Gia, V. K. Sarker, I. Tcarenko, A. M. Rahmani, T. Westerlund, P. Liljeberg and H. Tenhunen, Energy efficient wearable sensor node for IoT-based fall detection systems, Microprocessors and Microsystems, Vol. 56, pp. 34–46, 2018.

    Article  Google Scholar 

  90. M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. R. Sadeghi, and S. Tarkoma, IoT Sentinel: automated device-type identification for security enforcement in IoT. in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), pp. 2177–2184, IEEE, New York, June 2017.

  91. T. N. Gia, A. M. Rahmani, T. Westerlund, P. Liljeberg and H. Tenhunen, Fog computing approach for mobility support in internet-of-things systems, IEEE Access, Vol. 6, pp. 36064–36082, 2018.

    Article  Google Scholar 

  92. J. E. Luzuriaga, J. C. Cano, C. Calafate, P. Manzoni, M. Perez, and P. Boronat, Handling mobility in IoT applications using the MQTT protocol. in Internet Technologies and Applications (ITA), 2015, pp. 245–250, IEEE, New York, September 2015.

  93. S. M. Chun, and J. T. Park, Mobile CoAP for IoT mobility management. in Consumer Communications and Networking Conference (CCNC), 2015 12th Annual IEEE, pp. 283–289, IEEE, New York, January 2015.

  94. A. Simiscuka, and G. M. Muntean, Age of information as a QoS metric in a relay-based IoT mobility solution. in IEEE Int. Wireless Com. and Mob. Comp. Conf. (IWCMC). 2018.

  95. S. Kubler, K. Främling and A. Buda, A standardized approach to deal with firewall and mobility policies in the IoT, Pervasive and Mobile Computing, Vol. 20, pp. 100–114, 2015.

    Article  Google Scholar 

  96. M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and S. Gannouni, AFIRM: Adaptive forwarding based link recoveryfor mobility support in NDN/IoT networks. Future Generation Computer Systems. 2018.

  97. N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, Reliability for emergency applications in internet of things. in 2013 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 361–366. IEEE, New York, May 2013.

  98. S. Li, and J. Huang, GSPN-based reliability-aware performance evaluation of IoT services. in 2017 IEEE International Conference on Services Computing (SCC), pp. 483–486. IEEE, New York, June 2017.

  99. A. Arış, S. F. Oktuğ, and T. Voigt, Security of internet of things for a reliable internet of services. in Autonomous Control for a Reliable Internet of Services, pp. 337–370. Springer, Cham, 2018.

  100. Y. G. Yue and P. He, A comprehensive survey on the reliability of mobile wireless sensor networks: Taxonomy, challenges, and future directions, Information Fusion, Vol. 44, pp. 188–204, 2018.

    Article  Google Scholar 

  101. J. Jung, M. Kang, I. Yoon, and D. K. Noh, Adaptive forward error correction scheme to improve data reliability in solar-powered wireless sensor networks. in 2016 International Conference on Information Science and Security (ICISS), pp. 1–4, IEEE, New York, December 2016.

  102. S. Yuan, L. Qiu, S. Gao, Y. Tong and W. Yang, Providing self-healing ability for wireless sensor node by using reconfigurable hardware, Sensors, Vol. 12, No. 11, pp. 14570–14591, 2012.

    Article  Google Scholar 

  103. K. Brunnström, S. A. Beker, K. De Moor, A. Dooms, S. Egger, M. N. Garcia, T. Hossfeld, S. Jumisko-Pyykkö, C. Keimel, M. C. Larabi, and B. Lawlor, Qualinet white paper on definitions of quality of experience, 2013.

  104. M. Varela, L. Skorin-Kapov, and T. Ebrahimi, Quality of service versus quality of experience. in Quality of experience, pp. 85–96, Springer, Cham, 2014.

  105. U. Reiter, K. Brunnström, K. De Moor, M. C. Larabi, M. Pereira, A. Pinheiro, J. You, and A. Zgank, Factors influencing quality of experience. in Quality of experience, pp. 55–72, Springer, Cham, 2014.

  106. X. Huang, K. Xie, S. Leng, T. Yuan and M. Ma, Improving Quality of Experience in multimedia Internet of Things leveraging machine learning on big data, Future Generation Computer Systems, Vol. 86, pp. 1413–1423, 2018.

    Article  Google Scholar 

  107. D.-H. Shin, A user-based model for the quality of experience of the internet of things, information and management, http://dx.doi.org/10.1016/j.im.2017.02.006.

  108. H. Tahaei, K. Ko, W. Seo, and S. Joo, A QoE based trustable SDN framework for IoT devices in mobile edge computing. in Advances in Computer Science and Ubiquitous Computing, pp. 1147–1152, Springer, Singapore, 2017.

  109. F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, Fog computing and its role in the internet of things. in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16, ACM, August 2012.

  110. S. Tomovic, K. Yoshigoe, I. Maljevic and I. Radusinovic, Software-defined fog Network architecture for IoT, Wireless Personal Communications, Vol. 92, No. 1, pp. 181–196, 2017.

    Article  Google Scholar 

  111. A. Khakimov, A. A. Ateya, A. Muthanna, I. Gudkova, E. Markova, and A. Koucheryavy, IoT-fog based system structure with SDN enabled. in Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, p. 62, ACM, New York, June 2018.

  112. B. Nguyen, N. Choi, M. Thottan, and J. Van der Merwe, SIMECA: SDN-based IoT mobile edge cloud architecture. in 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 503–509, IEEE, New York, May 2017.

  113. N. Omnes, M. Bouillon, G. Fromentoux, and O. Le Grand, A programmable and virtualized network & IT infrastructure for the internet of things: How can NFV & SDN help for facing the upcoming challenges. in 2015 18th International Conference on  Intelligence in Next Generation Networks (ICIN), pp. 64–69, IEEE, New York, February 2015.

  114. W. Cerroni, C. Buratti, S. Cerboni, G. Davoli, C. Contoli, F. Foresta, F. Callegati, and R. Verdone. Intent-based management and orchestration of heterogeneous openflow/IoT SDN domains. in 2017 IEEE Conference on Network Softwarization (NetSoft), pp. 1–9, IEEE, New York, July 2017.

  115. T. Maksymyuk, S. Dumych, M. Brych, D. Satria, and M. Jo, An IoT based monitoring framework for software defined 5G mobile networks. in Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication, p. 105, ACM, January 2017.

  116. Volkov, A. Muhathanna, R. Pirmagomedov, and R. Kirichek, SDN approach to control internet of thing medical applications traffic. in International Conference on Distributed Computer and Communication Networks, (pp. 467-476). Springer, Cham, September 2017.

  117. F. Sallabi, F. Naeem, M. Awad, and K. Shuaib, Managing IoT-based smart healthcare systems traffic with software defined networks. in 2018 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–6, IEEE, New York, June 2018.

  118. S. Al-Rubaye, E. Kadhum, Q. Ni, and A. Anpalagan, Industrial internet of things driven by SDN platform for smart grid resiliency, IEEE Internet of Things Journal, 2017.

  119. A. B. G. Hernando, A. D. S. Fariña, L. B. Triana, F. J. R. Piñar, and D. F. Cambronero, Virtualization of residential IoT functionality by using NFV and SDN. in 2017 IEEE International Conference on Consumer Electronics (ICCE), pp. 86–87, IEEE, New York, January 2017.

  120. A. Muthanna, R. Gimadinov, R. Kirichek, A. Koucheryavy, and M. S. A. Muthanna, Software development for the centralized management of IoT-devices in the “smart home” systems. in Young Researchers in Electrical and Electronic Engineering (EIConRus), 2017 IEEE Conference of Russian, pp. 190–194. IEEE, New York, February 2017.

  121. S. Correia, A. Boukerche and R. I. Meneguette, An architecture for hierarchical software-defined vehicular networks, IEEE Communications Magazine, Vol. 55, No. 7, pp. 80–86, 2017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wiem Bekri or Rihab Jmal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekri, W., Jmal, R. & Chaari Fourati, L. Internet of Things Management Based on Software Defined Networking: A Survey. Int J Wireless Inf Networks 27, 385–410 (2020). https://doi.org/10.1007/s10776-020-00488-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-020-00488-2

Keywords

Navigation