Skip to main content

Advertisement

Log in

A Survey on Extending the Lifetime for Wireless Sensor Networks in Real-Time Applications

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Wireless Sensor Network (WSN) has achieved a great contribution in establishing the recent technological revolution. One of the most important challenges in WSNs is extending the lifetime of the network, wherein each task performed by a sensor node requires an amount of energy to complete. However, sensor nodes are powered by limited capacity batteries and distributed in remote locations. This causes a limitation in both the lifetime and the performance of the WSN. Most previous surveys ignored the energy waste phenomena and its vital role in exhausting the energy. So, this paper provides a comprehensive review for the previous energy conservation approaches and classifies them into two basic categories: energy optimization and energy-wasting avoidance. Concerning energy optimization techniques, we present an updated and comprehensive evaluation for Software Defined Network (SDN) as an energy optimization technique. Furthermore, in this paper, several recent WSN clustering algorithms are addressed and compared based on novel and efficient comparison dimensions. Finally, the paper collects the issues that cause waste of energy and discusses their detection and control mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Arghavani, M. Esmaeili, M. Esmaeili, F. Mohseni and A. Arghavani, Optimal energy aware clustering in circular wireless sensor networks, Ad Hoc Networks, Vol. 65, pp. 91–98, 2017.

    Article  Google Scholar 

  2. N. A. Pantazis, Survey on power control issues in wireless sensor networks, IEEE Communications Surveys & Tutorials, Vol. 9, No. 4, pp. 86–107, 2007.

    Article  MathSciNet  Google Scholar 

  3. J. Yick, B. Mukherjee and D. Ghosal, Wireless sensor network survey, Computer Networks, Vol. 52, No. 12, pp. 2292–2330, 2008.

    Article  Google Scholar 

  4. F. Wu, J. M. Redouté, and M. R. Yuce, M. R,. A self-powered wearable body sensor network system for safety applications. in 2018 IEEE SENSORS, pp. 1–4, IEEE, October 2018.

  5. J. Yang, J. Zhou, Z. Lv, W. Wei and H. Song, A real-time monitoring system of industry carbon monoxide based on wireless sensor networks, Sensors, Vol. 15, No. 11, pp. 29535–29546, 2015.

    Article  Google Scholar 

  6. L. J. Chien, M. Drieberg, P. Sebastian, and L. H. Hiung, A simple solar energy harvester for wireless sensor networks, in 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) , pp. 1–6, IEEE, August, 2016.

  7. G. Anastasi, M. Conti, M. Di Francesco and A. Passarella, Energy conservation in wireless sensor networks: a survey, Ad Hoc Networks, Vol. 7, No. 3, pp. 537–568, 2009.

    Article  Google Scholar 

  8. J. A. Khan, H. K. Qureshi and A. Iqbal, Energy management in wireless sensor networks: a survey, Computers & Electrical Engineering, Vol. 41, pp. 159–176, 2015.

    Article  Google Scholar 

  9. F. Fanian and M. K. Rafsanjani, Cluster-based routing protocols in wireless sensor networks: a survey based on methodology, Journal of Network and Computer Applications, Vol. 142, pp. 111–142, 2019.

    Article  Google Scholar 

  10. X. Liu, A survey on clustering routing protocols in wireless sensor networks, Sensors, Vol. 12, No. 8, pp. 11113–11153, 2012.

    Article  Google Scholar 

  11. M. M. Afsar and M. H. Tayarani-N, Clustering in sensor networks: a literature survey, Journal of Network and Computer Applications, Vol. 46, pp. 198–226, 2014.

    Article  Google Scholar 

  12. N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford and J. Turner, OpenFlow: enabling innovation in campus networks, ACM SIGCOMM Computer Communication Review, Vol. 38, No. 2, pp. 69–74, 2008.

    Article  Google Scholar 

  13. A. Gante De, M. Aslan, and A. Matrawy, Smart wireless sensor network management based on software-defined networking. in 2014 27th Biennial Symposium on Communications (QBSC) , pp. 71–75, IEEE, June, 2014.

  14. S. Misra, S. Bera, M. P. Achuthananda, S. K. Pal and M. S. Obaidat, Situation-aware protocol switching in software-defined wireless sensor network systems, IEEE Systems Journal, Vol. 12, No. 3, pp. 2353–2360, 2018.

    Article  Google Scholar 

  15. A. Banerjee and D. Hussain, SD-EAR: energy aware routing in software defined wireless sensor networks, Applied Sciences, Vol. 8, No. 7, pp. 1013, 2018.

    Article  Google Scholar 

  16. L. Peizhe, W. Muqing, L. Wenxing and Z. Min, A game-theoretic and energy-efficient algorithm in an improved software-defined wireless sensor network, IEEE Access, Vol. 5, pp. 13430–13445, 2017.

    Article  Google Scholar 

  17. H. Huang, Z. Wu and S. Tang, Energy-saving route optimizationin a software-defined wireless sensor network, International Journal of Distributed Sensor Networks, Vol. 14, No. 10, pp. 1550147718807655, 2018.

    Article  Google Scholar 

  18. F. Hu, Q. Hao and K. Bao, A survey on software-defined network and openflow: from concept to implementation, IEEE Communications Surveys & Tutorials, Vol. 16, No. 4, pp. 2181–2206, 2014.

    Article  Google Scholar 

  19. D. Zeng, T. Miyazaki, S. Guo, T. Tsukahara, J. Kitamichi, and T. Hayashi, T, Evolution of software-defined sensor networks. in 2013 IEEE 9th International Conference on Mobile Ad-hoc and Sensor Networks, pp. 410–413, IEEE, December, 2013.

  20. H. I. Kobo, A. M. Abu-Mahfouz and G. P. Hancke, A survey on software-defined wireless sensor networks: challenges and design requirements, IEEE Access, Vol. 5, pp. 1872–1899, 2017.

    Article  Google Scholar 

  21. Z. J. Han and W. Ren, A novel wireless sensor networks structure based on the SDN, International Journal of Distributed Sensor Networks, Vol. 10, No. 3, pp. 874047, 2014.

    Article  Google Scholar 

  22. D. Zeng, P. Li, S. Guo, T. Miyazaki, J. Hu and Y. Xiang, Energy minimization in multi-task software-defined sensor networks, IEEE Transactions on Computers, Vol. 64, No. 11, pp. 3128–3139, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, Logically centralized?: state distribution trade-offs in software defined networks. in Proceedings of the first workshop on Hot topics in software defined networks, pp. 1–6, ACM, August, 2012.

  24. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman and R. Kompella, Towards an elastic distributed SDN controller, ACM SIGCOMM Computer Communication Review, Vol. 43, No. 4, pp. 7–12, 2013.

    Article  Google Scholar 

  25. B. T. De Oliveira, L. B. Gabriel and C. B. Margi, TinySDN: enabling multiple controllers for software-defined wireless sensor networks, IEEE Latin America Transactions, Vol. 13, No. 11, pp. 3690–3696, 2015.

    Article  Google Scholar 

  26. J. Xie, D. Guo, Z. Hu, T. Qu and P. Lv, Control plane of software defined networks: a survey, Computer Communications, Vol. 67, pp. 1–10, 2015.

    Article  Google Scholar 

  27. S. Hassas Yeganeh, Y. Ganjali, and Y, Kandoo, A framework for efficient and scalable offloading of control applications. in Proceedings of the first workshop on Hot topics in software defined networks, pp. 19–24, ACM, August, 2012.

  28. P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, T ... & G. Parulkar, ONOS: towards an open, distributed SDN OS. in Proceedings of the third workshop on Hot topics in software defined networking, pp. 1–6. ACM.

  29. A. Tootoonchian, and Y. Ganjali, Hyperflow: a distributed control plane for openflow. in Proceedings of the 2010 internet network management conference on Research on enterprise networking, Vol. 3, April, 2010.

  30. F. Olivier, G. Carlos, & N. Florent, SDN based architecture for clustered WSN. in 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing , pp. 342–347, IEEE, July, 2015.

  31. M. Jacobsson and C. Orfanidis, Using software-defined networking principles for wireless sensor networks, in: SNCNW. pp. 28–29, Karlstad, Sweden, 2015.

    Google Scholar 

  32. N. B. Shafi, K. Ali, and H. S. Hassanein, No-reboot and zero-flash over-the-air programming for wireless sensor networks. in 2012 9th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) , pp. 371–379, IEEE, June, 2012.

  33. W. Dong, Y. Liu, X. Wu, L. Gu and C. Chen, Elon: enabling efficient and long-term reprogramming for wireless sensor networks, ACM SIGMETRICS Performance Evaluation Review, Vol. 38, No. 1, pp. 49–60, 2010.

    Article  Google Scholar 

  34. D. Zeng, P. Li, S. Guo, and T. Miyazaki, Minimum-energy reprogramming with guaranteed quality-of-sensing in software-defined sensor networks. in 2014 IEEE International Conference on Communications (ICC), pp. 288–293, IEEE, June 2014.

  35. S. Yu, X. Liu, A. Liu, N. Xiong, Z. Cai and T. Wang, An adaption broadcast radius-based code dissemination scheme for low energy wireless sensor networks, Sensors, Vol. 18, No. 5, pp. 1509, 2018.

    Article  Google Scholar 

  36. L. Zhu, R. Chai, and Q. Chen, Control plane delay minimization based SDN controller placement scheme. in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), pp. 1–6, IEEE, October 2017.

  37. G. Wang, Y. Zhao, J. Huang and W. Wang, The controller placement problem in software defined networking: a survey, IEEE Network, Vol. 31, No. 5, pp. 21–27, 2017.

    Article  Google Scholar 

  38. T. Luo, H. P. Tan and T. Q. Quek, Sensor OpenFlow: enabling software-defined wireless sensor networks, IEEE Communications Letters, Vol. 16, No. 11, pp. 1896–1899, 2012.

    Article  Google Scholar 

  39. Z. Zhang, Z. Zhang, R. Wang, Z. Jia, H. Lei, and X. Cai, ESD-WSN: an efficient SDN-based wireless sensor network architecture for iot applications. in International Conference on Algorithms and Architectures for Parallel Processing, pp. 735–745, Springer, Cham, August 2017.

  40. W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, H, Energy-efficient communication protocol for wireless microsensor networks. in Proceedings of the 33rd annual Hawaii international conference on system sciences, pp. 10-pp, IEEE, January, 2000.

  41. W. B. Heinzelman, A. P. Chandrakasan and H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks, IEEE Transactions on Wireless Communications, Vol. 1, No. 4, pp. 660–670, 2002.

    Article  Google Scholar 

  42. V. Pal, G. Singh and R. P. Yadav, Balanced cluster size solution to extend lifetime of wireless sensor networks, IEEE Internet of Things Journal, Vol. 2, No. 5, pp. 399–401, 2015.

    Article  Google Scholar 

  43. X. Min, S. Wei-Ren, J. Chang-Jiang and Z. Ying, Energy efficient clustering algorithm for maximizing lifetime of wireless sensor networks, AEU-International Journal of Electronics and Communications, Vol. 64, No. 4, pp. 289–298, 2010.

    Google Scholar 

  44. W. Zhou, Energy efficient clustering algorithm based on neighbors for wireless sensor networks, Journal of Shanghai University, Vol. 15, No. 2, pp. 150–153, 2011.

    Article  Google Scholar 

  45. G. Han, H. Guan, J. Wu, S. Chan, L. Shu and W. Zhang, An uneven cluster-based mobile charging algorithm for wireless rechargeable sensor networks, IEEE Systems Journal, Vol. 13, pp. 3747, 2018.

    Article  Google Scholar 

  46. Z. Zhao, K. Xu, G. Hui and L. Hu, An energy-efficient clustering routing protocol for wireless sensor networks based on AGNES with balanced energy consumption optimization, Sensors, Vol. 18, No. 11, pp. 3938, 2018.

    Article  Google Scholar 

  47. M. Sajwan, D. Gosain and A. K. Sharma, Hybrid energy-efficient multi-path routing for wireless sensor networks, Computers & Electrical Engineering, Vol. 67, pp. 96–113, 2018.

    Article  Google Scholar 

  48. R. Pachlor and D. Shrimankar, LAR-CH: a cluster-head rotation approach for sensor networks, IEEE Sensors Journal, Vol. 18, No. 23, pp. 9821–9828, 2018.

    Article  Google Scholar 

  49. T. Amgoth and P. K. Jana, Energy-aware routing algorithm for wireless sensor networks, Computers & Electrical Engineering, Vol. 41, pp. 357–367, 2015.

    Article  Google Scholar 

  50. B. Baranidharan and B. Santhi, GAECH: genetic algorithm based energy efficient clustering hierarchy in wireless sensor networks, Journal of Sensors, Vol. 2015, pp. 1, 2015.

    Article  Google Scholar 

  51. S. Bayraklı and S. Z. Erdogan, Genetic algorithm based energy efficient clusters (gabeec) in wireless sensor networks, Procedia Computer Science, Vol. 10, pp. 247–254, 2012.

    Article  Google Scholar 

  52. V. Pal, G. Singh and R. P. Yadav, Cluster head selection optimization based on genetic algorithm to prolong lifetime of wireless sensor networks, Procedia Computer Science, Vol. 57, pp. 1417–1423, 2015.

    Article  Google Scholar 

  53. T. Kaur and D. Kumar, Particle swarm optimization-based unequal and fault tolerant clustering protocol for wireless sensor networks, IEEE Sensors Journal, Vol. 18, No. 11, pp. 4614–4622, 2018.

    Article  Google Scholar 

  54. Q. Ni, Q. Pan, H. Du, C. Cao and Y. Zhai, A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization, IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 14, No. 1, pp. 76–84, 2017.

    Article  Google Scholar 

  55. S. L. Chiu, Fuzzy model identification based on cluster estimation, Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, pp. 267–278, 1994.

    Article  Google Scholar 

  56. P. S. Rao, P. K. Jana and H. Banka, A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks, Wireless Networks, Vol. 23, No. 7, pp. 2005–2020, 2017.

    Article  Google Scholar 

  57. A. Hamzah, M. Shurman, O. Al-Jarrah and E. Taqieddin, Energy-efficient fuzzy-logic-based clustering technique for hierarchical routing protocols in wireless sensor networks, Sensors, Vol. 19, No. 3, pp. 561, 2019.

    Article  Google Scholar 

  58. J. S. Lee and W. L. Cheng, Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication, IEEE Sensors Journal, Vol. 12, No. 9, pp. 2891–2897, 2012.

    Article  Google Scholar 

  59. B. Baranidharan and B. Santhi, DUCF: distributed load balancing unequal clustering in wireless sensor networks using fuzzy approach, Applied Soft Computing, Vol. 40, pp. 495–506, 2016.

    Article  Google Scholar 

  60. P. Nayak and A. Devulapalli, A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime, IEEE Sensors Journal, Vol. 16, No. 1, pp. 137–144, 2016.

    Article  Google Scholar 

  61. M. R. Mundada, and P. B. Desai, P. B, A survey of congestion in Wireless Sensor Networks. in 2016 International Conference on Advances in Human Machine Interaction (HMI), pp. 1–5,. IEEE, March 2016.

  62. X. Yang, and Z. Li, Congestion control based on node and link in wireless sensor network. in 2016 35th Chinese Control Conference (CCC) , pp. 8383–8386, IEEE, July, 2016.

  63. N. Prabakaran, K. Geetha and K. Janani, K, Open stream scheme for node level congestion control in WSNs. in 3rd International Conference on Trendz in Information Sciences & Computing (TISC2011), pp. 95–100, IEEE, December 2011.

  64. C. Sergiou, V. Vassiliou and A. Paphitis, Hierarchical Tree Alternative Path (HTAP) algorithm for congestion control in wireless sensor networks, Ad Hoc Networks, Vol. 11, No. 1, pp. 257–272, 2013.

    Article  Google Scholar 

  65. K. Singh, K. Singh and A. Aziz, Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm, Computer Networks, Vol. 138, pp. 90–107, 2018.

    Article  Google Scholar 

  66. R. Sharma and D. K. Lobiyal, Energy holes avoiding techniques in sensor networks: a survey, International Journal of Engineering Trends and Technology, Vol. 20, No. 4, pp. 204–208, 2015.

    Article  Google Scholar 

  67. C. Bhardwaj, R. R. Sharma, and K. V. Arya, Flag-bit based co-operative communication to avoid energy holes in Wireless Sensor Network. in 2016 11th International Conference on Industrial and Information Systems (ICIIS) , pp. 753–758, IEEE, December, 2016.

  68. N. Sharmin, M. S. Alam, and S. S. Moni, WEMER: an energy hole mitigation scheme in Wireless Sensor Networks. In 2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE) , pp. 229–232, IEEE, December, 2016.

  69. M. A. Jawad, and F. Mir, Network lifetime enhancement in wireless sensor networks using secure alternate path. in 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) , pp. 414–419, IEEE, March, 2017.

  70. S. Kumar and S. Chauhan, A survey on scheduling algorithms for wireless sensor networks, International Journal of Computer Applications, Vol. 20, No. 5, pp. 7–13, 2011.

    Article  Google Scholar 

  71. W. Zhao and X. Tang, Scheduling sensor data collection with dynamic traffic patterns, IEEE Transactions on Parallel and Distributed Systems, Vol. 24, No. 4, pp. 789–802, 2013.

    Article  Google Scholar 

  72. F. Tong, W. Tang, R. Xie, L. Shu, and Y. C. Kim, P-MAC: a cross-layer duty cycle MAC protocol towards pipelining for wireless sensor networks. in 2011 IEEE International Conference on Communications (ICC) , pp. 1–5, IEEE, June, 2011.

  73. K. F. Ramadan, M. I. Dessouky, M. Abd-Elnaby and F. E. A. El-Samie, Node-power-based MAC protocol with adaptive listening period for wireless sensor networks, AEU-International Journal of Electronics and Communications, Vol. 84, pp. 46–56, 2018.

    Google Scholar 

  74. M. Salehi-Panahi and M. Abbaszadeh, Proposing a method to solve energy hole problem in wireless sensor networks, Alexandria Engineering Journal, Vol. 57, No. 3, pp. 1585–1590, 2018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A., Anter, A. & Kayed, M. A Survey on Extending the Lifetime for Wireless Sensor Networks in Real-Time Applications. Int J Wireless Inf Networks 28, 77–103 (2021). https://doi.org/10.1007/s10776-020-00502-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-020-00502-7

Keywords