Skip to main content
Log in

Multicast Network Security with Asymmetric Cooperative Relaying

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

This paper exhibits the confidentiality performance study of a cooperative multicast network consisting of \({\mathcal {K}}\) asymmetric relays over Nakagami-m fading channels, where the communication links face uneven signal-to-noise ratios (SNRs). Although, conventional symmetric deployment of relays are convenient for analysis purposes but this assumption is not always effective in real cooperative network applications. So in this analysis, a cooperative multicast network is considered where a group of asymmetric relays cooperate in communication between a base station and multiple destinations under the nose of multiple eavesdroppers. Based on the given probability density function (PDF) of SNR for a point-to-point communication system, the analytical expressions of the PDF of SNRs are developed for multicast and eavesdroppers channels. Then, using these PDFs, the analytical representations for the probability of non-zero secrecy multicast capacity and the secure outage probability are derived for analyzing the performance of the proposed model. Finally, analytical results are verified with Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Chu, X. Wang, Y. Yang, Exploiting cooperative relay for high performance communications in MIMO ad hoc networks, IEEE Transactions on Computers, Vol. 62, No. 4, pp. 716–729, 2012.

    MathSciNet  MATH  Google Scholar 

  2. J. Crawford, Y. Ko, Cooperative OFDM-IM relay networks with partial relay selection under imperfect CSI, IEEE Transactions on Vehicular Technology, Vol. 67, No. 10, pp. 9362–9369, 2018.

    Article  Google Scholar 

  3. A. Vashistha, A. Sharma, V. A. Bohara, Outage analysis of a multiple antenna cognitive radio system with cooperative decode-and-forward relaying, IEEE Communications Letters, Vol. 4, No. 2, pp. 125–128, 2015.

    Article  Google Scholar 

  4. M. I. Khalil, S. M. Berber, K. W. Sowerby, Bit error rate performance analysis in amplify-and-forward relay networks, Wireless Networks, Vol. 23, pp. 947–957, 2017.

    Article  Google Scholar 

  5. D. Darsena, G. Gelli, F. Melito, F. Verde, Performance analysis of amplify-and-forward multiple-relay MIMO systems with ZF reception, IEEE Transactions on Vehicular Technology, Vol. 64, No. 7, pp. 3274–3280, 2014.

    Article  Google Scholar 

  6. J. Chattha, M. Uppal, Layered multiplexed-coded relaying in wireless multicast using QAM transmissions, IEEE Communications Letters, Vol. 20, No. 4, pp. 760–763, 2016.

    Article  Google Scholar 

  7. X. Wang, M. Tao, Y. Xu, Outage analysis of cooperative secrecy multicast transmission, IEEE Wireless Communications Letters, Vol. 3, No. 2, pp. 161–164, 2014.

    Article  Google Scholar 

  8. D. K. Sarker, M. Z. I. Sarkar, M. S. Anower, Secure wireless multicasting with linear equalization, Physical Communication, Vol. 25, No. 1, pp. 201–213, 2017.

    Article  Google Scholar 

  9. D. K. Sarker, M. Z. I. Sarkar, M. S. Anower, Secure wireless multicasting through AF-cooperative networks with best-relay selection over Generalized fading channels, Wireless Networks, Vol. 26, No. 3, pp. 1717–1730, 2020.

    Article  Google Scholar 

  10. D. K. Sarker, M. Z. I. Sarkar, M. S. Anower, Enhancing Security in Multicasting with Partial Relay Selection over Composite Fading Channels, Wireless Personal Communications, Vol. 121, No. 1, pp. 1067–1084, 2021.

    Article  Google Scholar 

  11. D. K. Sarker, M. Z. I. Sarkar, M. S. Anower, Secure outage performance analysis for multicasting with linear equalization, In Proceedings of the 18th International Conference on Computer and Information Technology (ICCIT). IEEE, pp. 99–104, 2015.

  12. D. Wang, B. Bai, W. Chen, Z. Han, Energy efficient secure communication over decode-and-forward relay channels, IEEE Transactions on Communications, Vol. 63, No. 3, pp. 892–905, 2015.

    Article  Google Scholar 

  13. H. Lei, Z. Dai, K.-H. Park, W. Lei, G. Pan, M.-S. Alouini, Secrecy outage analysis of mixed RF-FSO downlink SWIPT systems, IEEE Transactions on Communications, Vol. 66, No. 12, pp. 6384–6395, 2018.

    Article  Google Scholar 

  14. Y. Zou, J. Zhu, X. Li, L. Hanzo, Relay selection for wireless communications against eavesdropping: A security-reliability tradeoff perspective, IEEE Networks, Vol. 30, No. 5, pp. 74–79, 2016.

    Article  Google Scholar 

  15. Y. Liu, L. Wang, T. Duy, M. Elkashlan, T. Q. Duong, Relay selection for security enhancement in cognitive relay networks, IEEE Wireless Communications Letters, Vol. 4, No. 1, pp. 46–49, 2015.

    Article  Google Scholar 

  16. H. Lei, H. Zhang, I. S. Ansari, Z. Ren, G. Pan, K. A. Qaraqe, M.-S. Alouini, On secrecy outage of relay selection in underlay cognitive radio networks over Nakagami-m fading channels, IEEE Transactions on Cognitive Communications and Networking, Vol. 3, No. 4, pp. 614–627, 2017.

    Article  Google Scholar 

  17. K. Liu, X. Yuan, M. Tao, On the DoF region for the asymmetric MIMO two-way X relay channel, IEEE Transactions on Communications, Vol. 66, No. 1, pp. 119–132, 2018.

    Article  Google Scholar 

  18. Y. Ye, Y. Li, Z. Wang, X. Chu, H. Zhang, Dynamic asymmetric power splitting scheme for SWIPT based two-way multiplicative AF relaying, IEEE Signal Processing Letters, Vol. 25, No. 7, pp. 1–5, 2018.

    Article  Google Scholar 

  19. X. Ji, W.-P. Zhu, D. Massicotte, M. Ahmed-Ouameur, Energy efficient power allocation and relay location for asymmetric bi-directional relaying, In Proceedings of the IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 1225–1229, 2015.

  20. Z. Hasan, A. Jamalipour, V. K. Bhargava, Cooperative communication and relay selection under asymmetric information, In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), pp. 2373–2378, 2012.

  21. A. Adinoyi, H. Yanikomeroglu, On the performance of cooperative wireless fixed relays in asymmetric channels, In Proceedings of the IEEE Global Communications Conference (GLOBECOM), pp. 1–5, 2006.

  22. S. Vatedka, N. Kashyap, Nested lattice codes for secure bidirectional relaying with asymmetric channel gains, In Proceedings of the IEEE Information Theory Workshop (ITW), pp. 1–5, 2015.

  23. K. Chopra, R. Bose, A. Joshia, Secure power trading in cooperative relay network with asymmetric cournot duopoly model, In Proceedings of the 12th Annual Symposium On Information Assurance (ASIA’17), pp. 1–6, 2017.

  24. Y. Meziti, H. Wang, Achieving perfect secrecy capacity of an asymmetric bidirectional relay channel, In Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1–6, 2017.

  25. B. Wang, J. Zhang, A. Madsen, On the capacity of MIMO relay channels, IEEE Transactions on Information Theory, Vol. 5, No. 11, pp. 29–43, 2005.

    Article  MathSciNet  Google Scholar 

  26. M. Z. I. Sarkar, T. Ratnarajah, Secure wireless multicasting through Nakagami-m fading MISO channel, In Proceedings of the IEEE 45th Asilomar Conf. on Signals, Systems and Computers (ASILOMAR), pp. 300–304, 2011.

  27. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Edition, Academic, San Diego, CA, 2007.

    MATH  Google Scholar 

  28. A. Khisti, D. Zhang, Artificial-noise alignment for secure multicast using multiple antennas, IEEE Communications Letters, Vol. 17, No. 8, pp. 1568–1571, 2013.

    Article  Google Scholar 

  29. C. E. Shannon, Communication theory of secrecy systems, Bell System Technical Journal, Vol. 28, pp. 656–715, 1949.

    Article  MathSciNet  Google Scholar 

  30. M. Z. I. Sarkar, T. Ratnarajah, Enhancing security in correlated channel with maximal ratio combining diversity, IEEE Transactions on Signal Processing, Vol. 60, No. 12, pp. 6745–6751, 2012.

    Article  MathSciNet  Google Scholar 

  31. C. -K. Toh, Ad Hoc Mobile Wireless Networks: Protocols and Systems, 2nd Edition, Pearson Education and Dorling Kindersley (India) Pvt. Ltd., Delhi, 2009.

    Google Scholar 

  32. L.M. Feeney, B. Ahlgren, A. Westerlund, Spontaneous Networking: An Application-Oriented Approach to Ad Hoc Networking. IEEE Communication Magazene, Vol. 39, No. 6, pp. 0–181, 2001.

    Google Scholar 

  33. C. Bettstetter, G. Resta, P. Santi, The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, Vol. 2, No. 3, pp. 257–269, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip Kumar Sarker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I

The evaluation of the integral, \({\mathcal {I}}_{1}\) is given as follows:

$$\begin{aligned} {\mathcal {I}}_{1}&=\int _{0}^{\alpha _{l}}\sum ^{{\mathcal {K}}+1}_{\jmath }\sum ^{m_{\jmath }}_{\kappa =1} {\mathcal {B}}\beta _{n}^{a_{2}}e^{-b_{2}\beta _{n}} \Biggl [\sum ^{{\mathcal {K}}+1}_{\jmath }\sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}}\Biggl \{\frac{a_{2}!}{b_{2}^{a_{2}+1}}\nonumber \\&\quad -\sum _{\kappa _{1}=0}^{a_{2}} \frac{a_{2}!\beta _{n}^{\kappa _{1}}e^{-b_{2}\beta _{n}}}{\kappa _{1}!b_{2}^{a_{2} -\kappa _{1}+1}}\Biggl \}\Biggl ]d\beta _{n}\nonumber \\&=\int _{0}^{\alpha _{l}} \sum ^{{\mathcal {K}}+1}_{\jmath }\sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}}\sum ^{{\mathcal {K}}+1}_{\jmath } \sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}} \Biggl [\Biggl \{\frac{a_{2}!\beta _{n}^{a_{2}}e^{-b_{2}\beta _{n}}}{b_{2}^{a_{2}+1}}\nonumber \\&\quad -\sum _{\kappa _{1}=0}^{a_{2}} \frac{a_{2}!\beta _{n}^{a_{2}+\kappa _{1}}e^{-2b_{2}\beta _{n}}}{\kappa _{1}!b_{2}^{a_{2} -\kappa _{1}+1}}\Biggl \}\Biggl ]d\beta _{n}\nonumber \\&=\sum ^{{\mathcal {K}}+1}_{\jmath }\sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}}\sum ^{{\mathcal {K}}+1}_{\jmath } \sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}}\Biggl [{\mathcal {D}}_{1} \int _{0}^{\alpha _{l}}\beta _{n}^{a_{2}}e^{-b_{2}\beta _{n}}d\beta _{n}\nonumber \\&\quad -{\mathcal {F}}_{1}\int _{0}^{\alpha _{l}} \beta _{n}^{\eta _{1}}e^{-\theta _{1}\beta _{n}}d\beta _{n}\Biggl ], \end{aligned}$$
(25)

where \({\mathcal {D}}_{1}=a_{2}!b_{2}^{-(a_{2}+1)}\), \({\mathcal {F}}_{1}=\sum _{\kappa _{1}=0}^{a_{2}}\frac{a_{2}!}{\kappa _{1}!b_{2}^{\eta _{2}}}\), \(\eta _{1}=a_{2}+\kappa _{1}\), \(\eta _{2}=a_{2}-\kappa _{1}+1\) and \(\theta _{1}=2b_{2}\). Performing integration using eqn. (8), we obtain

$$\begin{aligned} {\mathcal {I}}_{1}&=\sum ^{{\mathcal {K}}+1}_{\jmath }\sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}} \sum ^{{\mathcal {K}}+1}_{\jmath }\sum ^{m_{\jmath }}_{\kappa =1}{\mathcal {B}}\Biggl [{\mathcal {D}}_{1} \Biggl ({\mathcal {D}}_{1}-{\mathcal {F}}_{2}\frac{\gamma _{l}^{\kappa _{2}}}{e^{b_{2}\gamma _{l}}}\Biggl ) -{\mathcal {F}}_{1}\Biggl ({\mathcal {D}}_{2}-{\mathcal {F}}_{3}\frac{\alpha _{l}^{\kappa _{3}}}{e^{\theta _{1}\alpha _{l}}}\Biggl )\Biggl ]. \end{aligned}$$
(26)

where \({\mathcal {D}}_{2}=\eta _{1}!\theta _{1}^{-(\eta _{1}+1)}\), \({\mathcal {F}}_{2}=\sum _{\kappa _{2}=0}^{a_{2}}\frac{a_{2}!}{\kappa _{2}!b_{2}^{\eta _{3}}}\), \({\mathcal {F}}_{3}=\sum _{\kappa _{3}=0}^{\eta _{1}}\frac{\eta _{1}!}{\kappa _{3}!\theta _{1}^{\eta _{4}}}\), \(\eta _{3}=a_{2}-\kappa _{2}+1\) and \(\eta _{4}=\eta _{1}-\kappa _{3}+1\).

Appendix II

The evaluation of the integral, \({\mathcal {I}}_{2}\) is given as follows:

$$\begin{aligned} {\mathcal {I}}_{2}&=\int _{L}^{\infty }\sum ^{{\mathcal {K}}+1}_{i}\sum ^{m_{i}}_{k=1} {\mathcal {A}}\frac{\alpha _{l}^{a_{1}}}{e^{b_{1}\alpha _{l}}}\Biggl [1- \sum ^{{\mathcal {K}}+1}_{i}\sum ^{m_{i}}_{k=1}{\mathcal {A}}\Biggl ({\mathcal {E}}_{1} -\sum _{k_{1}=0}^{a_{1}} {\mathcal {G}}_{1}\frac{\alpha _{l}^{k_{1}}}{e^{b_{1}\alpha _{l}}}\Biggl )\Biggl ]d\alpha _{l}. \end{aligned}$$
(27)

Performing integration using the following identity of [27, eq. (3.351.2)],

$$\begin{aligned} \int ^{\infty }_{u}x^{n}e^{-\mu x}dx&=e^{-\mu u}\sum ^{n}_{\phi =0}\frac{n!}{\phi !}\times \frac{u^{\phi }}{\mu ^{n-\phi +1}}, \end{aligned}$$

we obtain

$$\begin{aligned} {\mathcal {I}}_{2}&=\sum ^{{\mathcal {K}}+1}_{i}\sum ^{m_{i}}_{k=1}{\mathcal {A}} \Biggl [\sum _{\phi _{1}=0}^{a_{1}}\frac{a_{1}!\sigma ^{\phi _{1}}e^{-b_{1}\sigma }}{b_{1}^{a_{1}-\phi _{1}+1}}- \sum ^{{\mathcal {K}}+1}_{i}\sum ^{m_{i}}_{k=1}{\mathcal {A}} \Biggl ({\mathcal {E}}_{1}\sum _{\phi _{1}=0}^{a_{1}} \frac{a!\sigma ^{\phi _{1}}e^{-b_{1}\sigma }}{b_{1}^{a_{1}-\phi _{1}+1}}\\&-\sum _{k_{1}=0}^{a_{1}}{\mathcal {G}}_{1}\sum _{\phi _{2}=0}^{k_{1}}\frac{k_{1}!\sigma ^{\phi _{2}}e^{-2b_{1}\sigma }}{b_{1}^{k_{1}-\phi _{2}+1}}\Biggl )\Biggl ]. \end{aligned}$$

Substituting the value of \(\sigma\) and after some mathematical manipulation, we have

$$\begin{aligned} {\mathcal {I}}_{2}&=\sum ^{{\mathcal {K}}+1}_{i}\sum ^{m_{i}}_{k=1}{\mathcal {A}} \biggl [\varPi _{1}\frac{\beta _{n}^{\phi _{4}}}{e^{\theta _{3}\beta _{n}}} -\sum ^{{\mathcal {K}}+1}_{i}\sum ^{m_{i}}_{k=1}{\mathcal {A}} \left( \varPi _{2}\frac{\beta _{n}^{\phi _{6}}}{e^{-\theta _{3}\beta _{n}}} -\varPi _{3}\frac{\beta _{n}^{\phi _{8}}}{e^{-\theta _{4}\beta _{n}}}\right) \biggl ], \end{aligned}$$
(28)

where

$$\begin{aligned} \varPi _{1}\,=\,&\sum _{\phi _{1}=0}^{a_{1}}\sum _{\phi _{3}=0}^{\phi _{1}}\left( {\begin{array}{c}\phi _{1}\\ \phi _{3}\end{array}}\right) \sum _{\phi _{4}=0}^{\phi _{3}}\left( {\begin{array}{c}\phi _{3}\\ \phi _{4}\end{array}}\right) \frac{a_{1}!(-1)^{\phi _{1}-\phi _{3}} e^{2{\mathcal {R}}_{s}\phi _{3}}}{b_{1}^{a_{1}-\phi _{1}+1}e^{b_{1}(e^{2R_{s}}-1)}},\\ \varPi _{2}\,=\,&{\mathcal {E}}_{1}\sum _{\phi _{1}=0}^{a_{1}} \sum _{\phi _{5}=0}^{\phi _{1}}\left( {\begin{array}{c}\phi _{1}\\ \phi _{5}\end{array}}\right) \sum _{\phi _{6}=0}^{\phi _{5}}\left( {\begin{array}{c}\phi _{5}\\ \phi _{6}\end{array}}\right) \frac{a_{1}!(-1)^{\phi _{1}-\phi _{5}} }{b_{1}^{a_{1}-\phi _{1}+1}} \frac{e^{2{\mathcal {R}}_{s}\phi _{5}}}{e^{b_{1}(e^{2R_{s}}-1)}},\\ \varPi _{3}\,=\,&\sum _{k_{1}=0}^{a_{1}}{\mathcal {G}}_{1}\sum _{\phi _{2}=0}^{k_{1}} \sum _{\phi _{7}=0}^{\phi _{2}}\left( {\begin{array}{c}\phi _{2}\\ \phi _{7}\end{array}}\right) \sum _{\phi _{8}=0}^{\phi _{7}}\left( {\begin{array}{c}\phi _{7}\\ \phi _{8}\end{array}}\right) \frac{k_{1}!(-1)^{\phi _{2}-\phi _{7}} }{b_{1}^{k_{1}-\phi _{2}+1}} \frac{e^{2{\mathcal {R}}_{s}\phi _{7}}}{e^{2b_{1}(e^{2{\mathcal {R}}_{s}}-1)}},\\ \theta _{3}=&b_{1}e^{2{\mathcal {R}}_{s}} \,\, \text {and} \,\, \theta _{4}=2b_{1}e^{2R_{s}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarker, D.K., Sarkar, M.Z.I., Anower, M.S. et al. Multicast Network Security with Asymmetric Cooperative Relaying. Int J Wireless Inf Networks 29, 303–313 (2022). https://doi.org/10.1007/s10776-022-00566-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-022-00566-7

Keywords

Navigation