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Abstract
In this paper, we compare the direct TOA-based UWB technology with the RSSI-based BLE technology using machine learn-
ing algorithms for proximity detection during epidemics in terms of complexity of implementation, availability in existing 
smart phones, and precision of the results. We establish the theoretical limits on the precision and confidence of proximity 
estimation for both technologies using the Cramer Rao Lower Bound (CRLB) and validate the theoretical foundations using 
empirical data gathered in diverse practical operating scenarios. We perform our empirical experiments at eight distances in 
three flat environments and one non-flat environment encompassing both Line of Sight (LOS) and Obstructed-LOS (OLOS) 
situations. We also analyze the effects of various postures (eight angles) of the person carrying the sensor, and four on-body 
locations of the sensor. To estimate the range with BLE RSSI, we use 14 features for training the Gradient Boosted Machines 
(GBM) learning algorithm and we compare the precision of results with those obtained from memoryless UWB TOA rang-
ing algorithm. We show that the memoryless UWB TOA algorithm achieves 93.60% confidence, slightly outperforming the 
92.85% confidence of the BLE RSSI with more complex GBM machine learning (ML) algorithm and the need for substantial 
training. The training process for the RSSI-based BLE social distance measurements involved 3000 measurements to create 
a training dataset for each scenario and post-processing of data to extract 14 features of RSSI, and the ML classification 
algorithm consumed 200 s of computational time. The memoryless UWB ranging algorithm achieves more robust results 
without any need for training in less than 0.5 s of computation time.
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1  Introduction

The Covid-19 epidemic revealed the importance of research 
in opportunistic social distance estimation during the epi-
demics using the Received Signal Strength Indicator (RSSI) 
of Bluetooth Low Energy (BLE) wireless technology, which 
are commonly available in smartphones [1–3]. Due to the 
effects of multipath and shadow fading on RSSI-based rang-
ing, direct estimation of distance using RSSI is unreliable as 
it is compared with time-of-arrival (TOA) based position-
ing [gezici, pah19]. However, due to availability of BLE in 
smartphones a new trend of research to improve the perfor-
mance of RSSI-based ranging with machine learning algo-
rithms [4] and hybrid positioning approaches that integrate 
additional information from various mechanical sensors (e.g. 
accelerometer and gyroscope) that are built into many smart-
phones [5] has attracted considerable attention in recent lit-
erature. Ultra-Wideband (UWB), an alternative emerging 
popular wireless technology, offers a more precise Time-of-
Arrival (TOA) range without requiring complex ML algo-
rithms that need extensive training and large amounts of 
labeled training data. Inexpensive UWB devices are already 
available in the market and the existing 5G cellular networks 
support UWB positioning. What is lacking in the literature 
is the comparison of these improved RSSI-based ranging 

with the UWB ranging. Time of arrival (TOA) based rang-
ing with the ultrawide (UWB) signals [6, 7] has emerged 
as an alternative to unreliable, opportunistic RSSI-based 
BLE ranging. The reuse of existing popular devices, which 
already have the circuitry required for both UWB and BLE 
RSSI, could facilitate rapid, wide-scale deployment and curb 
epidemics quickly. With the recent emergence of low cost 
UWB devices [8] and the 3GPP recommendation of TOA 
base ranging for 5G and beyond [9–12], TOA-based UWB 
social distance estimation has become a viable alternative 
to BLE RSSI. In comparison to ML algorithms that require 
large amounts of labeled training data and an extensive train-
ing process, the UWB approach utilizes real-time algorithms 
that do not require training or memory, while still achiev-
ing high precision ranging and confidence on proximity 
estimates.

The objective of this study is to establish a theoretical 
foundation for comparing the precision and confidence in 
the protocols for measuring social distance using BLE RSSI 
and UWB TOA devices, and to validate this theoretical basis 
using empirical data gathered in practical scenarios. Using 
the Cramer Rao Lower Bound (CRLB) of RSSI and TOA 
ranging [6, 7], the theoretical foundations enable deriva-
tion and analyses of precision and confidence of estimated 
social distance. We expand the derivation of confidence for 
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RSSI-based ranging previously presented in [4] to include 
TOA-based ranging, which we then validate using empiri-
cal data gathered in multiple practical scenarios using BLE 
and DecaWave UWB devices. We perform empirical experi-
ments at eight distances in three flat environments and one 
non-flat environment encompassing both Line of Sight 
(LOS) and Obstructed-LOS (OLOS) situations. We also 
analyze the effects of various postures (eight angles) of the 
person carrying the sensor, and four on-body locations of the 
sensor. To estimate range using BLE RSSI, 14 RSSI features 
were classified using the Gradient Boosted Machines (GBM) 
ML algorithm. The empirical results for TOA ranging using 
memoryless algorithms are derived from data gathered using 
inexpensive, off-the shelf UWB DecaWave chipsets. To the 
best of our knowledge, our analysis is the first to systemati-
cally compare BLE RSSI and UWB TOA for social distance 
estimation using rigorous theoretical foundations.

The rest of this paper is as follows. In part II, we intro-
duce the data gathering scenarios we investigated and pro-
vide details of our dataset. In part III, we present the rel-
evant theoretical foundations including the calculation of 
CRLB, as well as the derivation of confidence of proximity 
detection and corresponding bounds. In part IV, we present 
experiments to validate the theoretical foundations presented 
in part II, for the comparative performance evaluation of 
proximity detection using BLE RSSI and UWB TOA.

2 � The Promixity Datasets 
and Measurements Scenarios

This study builds on our previous study reported in [4], in 
which we analyzed the existing MITRE Range Angle Struc-
tured (MRAS) dataset [13] provided by the Private Auto-
mated Contact Tracing (PACT) consortium. The MRAS 
dataset contains RSSI measurements gathered using BLE 
devices in various testing scenarios at different distances 
in flat Line-Of-Sight (LOS) situations. Since the existing 
MRAS dataset only includes BLE RSSI data, to facilitate a 
comparison with UWB, we had to conduct experiments to 
gather UWB TOA measurements. Specifically, in this study, 
we collected our own dataset to enable comparative per-
formance evaluation of range estimation using BLE RSSI 
and TOA gathered using DecaWave 1000 UWB technolo-
gies. To ensure a fair comparison, we collected data from 
both device types in the exact same locations, environments, 
and scenarios. Similar to the PACT dataset, our dataset sce-
narios were rich, including various room sizes and on-body 
positions in which the measurement device was carried/
held by the owner of the test device. We also expanded on 
prior measurement scenarios, and included more diversified 
situations consisting of LOS as well as Non-Line-Of-Sight 
(NLOS), and non-flat staircase scenarios. Figure 1a and 

b provide an overview of our measurement scenarios. In 
Fig. 1a, transmitter-receiver distances ranging between 3 and 
12 ft were selected as these have been found to be the most 
challenging distances when detecting a social distance of 6 
feet is the objective (as recommended for Covid-19). Beyond 
8 feet, the intervals between the transmitter and receiver 
were increased in order to generate more significant RSSI 
differences. Figure 1b shows the four on-body locations 
in which subjects carried their smartphones. In this study, 
we also considered two postures, standing and sitting. The 
transmitter is always positioned at the 0 ft location, while 
the receiver moves at increments to enable measurements at 
distances ranging from 3 to 12 ft. In order to simulate the 
effects of shadow fading, at each stationary location, while 
holding the device, the tester turned 45° clockwise with the 
same posture. Since we defined the transmitter and receiver 
being face-to-face as 0°, RSSI and TOA were collected 
at eight angles at increments of 45°. At each test location 
shown in Fig. 1a, data was gathered for 30–40 s, which typi-
cally contained 300–400 RSSI samples or 64 TOA samples, 
which were stored in our dataset as depicted by Eq. (1).

where p(k) and �(k) are the k-th sample in the RSSI and 
TOA time series collected, respectively. N and M are the 
numbers of samples collected. Since N has values in the 
range 300–400 and M is 64 in this study, we selected Tp and 
T� , the time intervals of RSSI and TOA samples to ensure 
that data was gathered in approximately the same 30–40 s 
interval for both the BLE and UWB devices. Table 1 shows 
details of our environment settings. We collected our data in 
4 environments: a large room (a large laboratory), medium 
room (a meeting room), hallway (the corridor), and stairway 
(an indoor staircase). In each environment, the transmitter 
(an iPhone 7) and receiver (an iPhone 12) were separated 
by a wall for the NLOS scenario. For the LOS scenario, 
the transmitter and receiver were positioned in the center 
of an environment with no obstacle between them. While 
collecting data, the two testers were required to hold the 
phone in specific on-body locations (see the fourth row in 
Table 1). Their posture was either sitting or standing at a 
given location.

We observed a variation of up to 25 dB RSSI in one 
scenario. In order to reduce the significant effects of fad-
ing on the amplitude of the received signal from which 
we calculated the RSSI, our study for RSSI included clas-
sical and Machine Learning (ML) algorithms. Variations 
of amplitude do not have drastic effects on TOA measure-
ments and the results of TOA measurement can be utilized 
directly for range estimation. The RSSI measurements 

(1)
{

p(k) = RSSI(t)|t=kTp ; k = 1,… ,N

�(k) = TOA(t)|t=kT� ; k = 1, ....M
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in each location, defined by Eq. (1), are post-processed 
before feeding them in different ways into classical and 
ML algorithms. For classical estimation algorithms, we 
utilized the average of RSSI and TOA measurements gath-
ered in each location as defined by Eq. (2):

This post processing of data associates a single average RSSI 
measurement, Pr with a single average TOA measurement, 
�r for each location. For ML techniques, the 300–400 RSSI 
measurements in each location were grouped in overlapping 
sets of RSSI measurement vectors of length L, whose ele-
ments are defined by Eq. (3).

This processing associates an N − L set of L dimensional 
vectors to each location. Similar to [4], our performance 
criterion is the confidence of the correctness of the deci-
sion by the algorithm on whether the inter-subject distance 
is less than vs. over the social distance of 6 ft. Evaluation 

(2)

⎧⎪⎪⎨⎪⎪⎩

Pr =
1

N

N∑
k=1

p(k)

r =
1

M

M∑
k=1

�(k)

(3)S(n, L) = {P(k + n); k = 0, 1, ..L − 1}; n = 1, ....N − L

Fig. 1   Measurement scenarios 
used to gather our dataset, a 
eight distances (ft) and eight 
angles (degrees) for the dataset. 
b four on-body locations for the 
BLE and UWB devices

Table 1   Measurement scenarios used to gather data for our dataset

Scenarios Settings

Description of the areas Medium room, 
Large room hall-
way, Stairway

Multipath scenario LOS, NLOS
Type of device iPhone 7, iPhone 12
Device location (on-body) In hand, In purse, 

Pants pocket, 
Jacket Pocket

Tester’s posture Standing, sitting



484	 International Journal of Wireless Information Networks (2022) 29:480–490

1 3

was done using BLE RSSI (smartphone) or UWB TOA 
(DW1000 receiver) measurements gathered at the same 
location, respectively.

3 � Theoretical Foundations for Data Analysis

In this section, we introduce theoretical foundations derived 
from classical estimation theory. We relate the variance of 
observations ( Pr and � ) with the CRLB and then derive 
equations for the standard deviation of distance estimates as 
a function of the ground truth. With the assumption that the 
noise is a zero-mean Gaussian distribution, we are able to 
derive the upper bound for the performance of the proximity 
detection problem using the complementary error function 
(erfc). For RSSI-based ranging, we employ a linear regres-
sive model of the average received powers in the zero mean 
Gaussian distributed shadow fading, X(� ), with a fixed vari-
ance of � , enabling us to formulate the classical approach 
based on observation of the average RSSI [4]: 

Our objective is to estimate the range r. To estimate range 
using the TOA, we formulate the problem based on direct 
observation of range by multiplying the average TOA [14]:

where c is the speed of light, and �(�r) is the variance of 
TOA measurement noise determined from the CRLB of 
the TOA measurement. Equation (4b) is a function of pulse 
shape, bandwidth, W, and the received Signal to Noise Ratio 
(SNR), which provides a lower bound on the variation of the 
estimation [15]:

Using classical estimation theory, formulating the observa-
tion of a function of a noise parameter yields two functions: 
(1) the traditional RSSI linear regression model [4], and 
(2) the simple TOA [14] model for distance measurement 
(Eq. 4d).

Compared with BLE RSSI, the model for UWB TOA 
requires more parameters due to the difference in ranging 
algorithms utilized. Leveraging classical estimation theory, 
we relate the variance of distance estimates with the vari-
ance of RSSI and TOA measurements by introducing the 
CRLB. In addition, we show that the theoretical analyses 

(4a)O ∶ Pr = P0 − 10� log(r) + X(�),

(4b)O ∶ r = c ×
[
� + �(��)

]
= r + c × �(�� ) = r + �(�r),

(4c)�1(r) =
√
CRLB ≥

ln 10√
N10

�

�
r

(4d)
�r = c ×

√
CRLB ≥

c

2�

�
2 × SNR ×W × TM × f0

2

works not only for BLE but also for UWB, even though they 
utilize completely different algorithms to estimate distance.

3.1 � Maximum Likelihood Range Estimation 
and CRLB for Ranging Error

In classical estimation theory, the optimal maximum likeli-
hood estimate of the range, is the inverse of g(r), the obser-
vation function Eq. (5a): 

Therefore, the optimal Maximum Likelihood Estimates 
(MLE) of range from average RSSI and TOA measurements 
are given by Eq. (5b):

The variance of this estimation is the CRLB, which is the 
inverse of the Fisher Information Matrix (FIM) of the dataset 
Eq. (6a), calculated in [14]: 

where �(r) is the variance of ranging error, g(r) is defined by 
Eq. (5b), and �M is the standard deviation of measurement 
noise. For the RSSI measurements, the standard deviation 
of shadow fading, and for TOA, was defined by Eq. (4c). 
With the two proposed models Eqs. (4c) and (4d), and the 
CRLB given in Eq. (6a), the standard deviation of distance 
estimates is given by Eq. (6b).

 where N is the number of samples (300–400 for RSSI and 
64 for TOA), and where SNR(0) is the Signal to Noise Ratio 
at a reference distance.

3.2 � Derivation of Bounds on Confidence 
and Validation with Empirical Measurements

When we estimate a range, r, from noisy RSSI or TOA 
measurements, the characteristics of the noise can be used 
to calculate the confidence on estimates. Our definition of 
confidence in this study is the probability of correct predic-
tion that an estimated distance is less or larger than 6 ft when 
the ground truth is also less or larger than 6 ft (expressed 
in Eq. 7a). 

(5a)r̂ = g−1(O).

(5b)

{
r̂RSSI = gRSSI

−1(Pr) = 10
−

Pr−P0

10𝛼

r̂TOA = gTOA
−1(r) = r = c × 𝜏

(6a)�2(r) = CRLB ≥
�M

2

[
g�(r)

]2 ,

(6b)

⎧⎪⎨⎪⎩

�RSSI(r) =
√
CRLB ≥

ln 10√
N10

�

�
r

�TOA(r) = c ×
√
CRLB ≥

c√
N2�

√
2SNR(r)WTMf0

2
,
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Confidence is a function of distance and reflects the degree 
of assurance of proper detection by the algorithm. For RSSI-
based ranging, modeled by Eq. (4a), and its maximum likeli-
hood estimate given by Eq. (5b), the confidence on ranging 
at a given distance r is given by Eq. (7b).

where P6 is the expected RSSI at a 6 ft distance calculated 
using Eq. (4a). In this study, we apply the Least Square 
(LS) algorithm to the collected RSSI data and calculate the 
empirical parameter ( P0 , � , � ) in Eq. (4a) before estimating 
P6 . In our RSSI database, there are 300–400 measurements 
at each location, and we calculate confidence for each of 
these measurements, which are then averaged over the entire 
set (dashed blue line in Fig. 4). For empirical ranging with 
TOA measurements, we utilize Eq. (5b) directly multiply-
ing the measured TOA by the speed of light and then check 
whether the estimated value is to the right side of 6-ft. These 
range estimates are averaged over the 64 TOA measurements 
to determine the empirical value of the confidence at each 
location in the dataset (dashed red line in Fig. 4).

We are also able to calculate confidence bounds on the 
range estimate as a function of distance from the calculation 
of the CRLB given by Eq. (6b). The CRLB provides the esti-
mate of the variance of a parameter from the function relating 
the parameter to the measurement or observation. In [4], the 
Distance Measurement Error (DME) of BLE RSSI is given as: 

(7a)𝛾(r) = Pr
{[
r̂ ≤ 6∕r ≤ 6

]
OR

[
r̂ > 6∕r > 6

]}

(7b)

𝛾(r) = Pr
��
r̂ ≤ 6∕r ≤ 6

�
OR

�
r̂ > 6∕r > 6

��
= Pr

��
r̂ ≤ 6∕Pr ≤ P6

�
OR

�
r̂ > 6∕Pr > P6

��

= 1 −
1

2
erfc

���P6 − Pr
��√

2𝜎

�
,

(8a)r̂ − r = 𝜂[𝜎(r)]

�(r) is the standard deviation of r̂ given in Eq. (6b). �[�(r)] 
is a zero-mean Gaussian distribution. The confidence bound 
for BLE RSSI is (Eq. 8b):

where �(r) is the probability of making correct proximity 
detection decisions. In Eq. (7a), �(r) is the actual probability 
calculated from real data. However, in Eq. (8b), �(r) is the 
theoretical upper bound for a given distance r.

4 � Comparison of Ranging with BLE and UWB 
Signals

In this section, we will first introduce the accuracy of rang-
ing and its theoretical bounds since the confidence of prox-
imity detection is highly related to it. As shown is Sect. 1, 
the theoretical foundation of this paper consists of two parts: 
(1) the bound of DME which is calculated from Eq. (6b), 
and (2) the bound on proximity detection confidence, which 
is calculated from Eq. (8b). In this section, we present the 
simulation results of the theoretical bounds as well as the 
empirical results obtained from BLE RSSI and UWB TOA 
data. Figure 2 shows the overall structure of the performance 
evaluation in this section. The UWB TOA is obtained using 
a two-way ranging approach provided by Decawave. Both 
a classical regression model and an ML algorithm (GBM), 
are evaluated on BLE RSSI data. We utilize the confidence 
defined in Sect. 3.2 as the criterion for performance eval-
uation. The suggested 6 ft social distance is the decision 
threshold. If the ground truth r < 6 ft , the confidence is the 
probability P{r̂ < 6 ft|r < 6 ft} . Similarly, if the ground truth 
r > 6 ft , the confidence is the probability P{r̂ > 6 ft|r > 6 ft} . 

(8b)

𝛾(r) = Pr
��
r̂ ≤ 6∕r ≤ 6

�
∩
�
r̂ > 6∕r > 6

��

= 1 −
1

2
erfc

�
�6 − r�√
2𝜎(r)

�
,

Fig. 2   Workflow for perfor-
mance evaluation: UWB TOA 
was gathered using DW1000, 
classical path-loss model uti-
lized for BLE RSSI, and GBM 
for extracted RSSI features



486	 International Journal of Wireless Information Networks (2022) 29:480–490

1 3

We begin by calculating DME for both RSSI and TOA. Then 
we present the bounds on confidence of RSSI and TOA 
based ranging, respectively. We also evaluate the perfor-
mance of BLE and UWB in various environments, which is 
presented in Sect. 4.2.

For BLE RSSI, we first calculate the parameters of the 
path loss model in Eq. (4a) by applying the Least Square 
Estimate (LSE) algorithm. Then, to compute the bound 
or confidence, we substitute the parameter values calcu-
lated into Eq.  (8b). As shown in Fig. 2, we use the GBM 
ML algorithm to decide whether the distance between 
two devices is within the 6 ft range. To train a GBM, we 
extracted 14 features, including frequency-domain and 
time-domain features. The training set and test set were 

80% and 20%, respectively. For UWB TOA, the theoreti-
cal confidence bound is also computed using Eq. (8b). 
The empirical confidence at a certain distance is simply 
calculated as the ratio of the count of correct decisions 
and the number of total samples. Then we calculated the 
standard deviation of TOA measurement and plugged the 
value into Eq. (6b) to calculate the CRLB of TOA. For all 
scenarios described in Table 1, the parameters for RSSI 
regression model (Eq. 4a) is P0 = − 46.80dBm , � = 2.07 
and � = 3.41 dB . And the CRLB parameters for TOA 
(Eq. 4c) are preset for Deca 1000 transceivers. They are 
f0 = 3993.6 MHz , M = 499.4 MHz , and TM = 26 ms . We 
use the first meter SNR as the reference and assume the 
SNR is inversely proportional to the squared distance.

2101876543
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4.1 � Results of Theoretical Foundations Analysis

Since we have already calculated the required parame-
ters for CRLB, we first compare the lower bound of the 
standard deviation of DME. As shown in Fig. 3, the two 
dashed lines are the CLRB obtained by substituting the 
parameters into Eq. (6b). At all distances, the TOA has a 
much lower CRLB (the lower dashed line) compared to 
the CRLB of RSSI (the upper dashed line), which means 
the UWB TOA is more accurate than BLE RSSI. Next, 
we calculate the actual SD of DME by calculating Fig. 4 
the standard deviation of the difference between distance 
estimates and the ground truth shown in Fig. 1a) The two 
solid lines in Fig. 3 are the observed results. For both 
RSSI and TOA estimates, the SD of DME is always above 
the corresponding CRLB. Figure 3 shows that Eq. (6b) 
holds for the estimate generated using the TOA-based, 
two-way ranging algorithm as well as the GBM-based 
RSSI estimate.

Using the correct CRLB, we can then analyze the 
main criterion in this study, the confidence of proximity 
detection. The theoretical confidence bounds for TOA 
and RSSI are both calculated using Eq. (6b). For RSSI, 
we input the 14 features into GBM, and it outputs whether 
the estimated distance is in the 6 ft range. For TOA, we 
multiply the speed of light by the estimated time and 
then compare the result with 6 ft to decide whether it is 
within the 6 ft range. Figure 4 shows the proposed con-
fidence bound (solid lines) and the empirical confidence 
calculated from the collected dataset (dashed lines). The 
V-shape bounds show the best performance of these two 
approaches on the test dataset. The solid red line is the 
bound of UWB TOA estimates, and the solid blue line is 
the bound of BLE RSSI estimates. Both approaches show 
approximately 100% confidence when the ground truth 
is far from the threshold ( r > 7 ft and r < 5 ft). Theoreti-
cally, UWB TOA can achieve much better performance 
around 6 ft because it has a narrow distance interval with 
low confidence. To achieve a more precise comparison 
in low-performance areas, we added two more locations 
between 5 and 6 ft and two more locations between 6 and 
7 ft. For the distances far from the threshold ( r > 7 ft 
and r < 5 ft), the two-way ranging and GBM have almost 
the same confidence as the theoretical bounds. For the 
low confidence range ( 5 < r > 7 ft), UWB TOA shows 
much higher confidence than BLE RSSI. At exactly 6 ft, 
both algorithms have the lowest confidence. Our empiri-
cal result shows that the confidence at all distances is 
consistently less than or equal to the upper bound cal-
culated from Eq. (8b), and that UWB TOA outperforms 
BLE RSSI when the distance is close to 6 ft.

4.2 � Effect of Measurement Scenario

In this section, we present the results of BLE RSSI and 
UWB TOA in various environments and scenarios described 
in Table 1. We use the average confidence at eight loca-
tions and eight angles shown in Fig. 1a as the performance 
criteria. As shown in Fig. 4, the most significant confidence 
difference is observed between 5 and 7 ft. Since the eight 
selected locations are distributed between 3 and 12 ft, the 
difference between the average confidences of BLE RSSI 
and UWB TOA is not very significant (less than 5%). While 
comparing the performance in different environments, the 
user’s posture and on-body location they carried the device 
were always “standing” and “in hand”, respectively.

We began our performance evaluation as well as analy-
sis of the effect of parameters by comparing the confidence 
calculated from GBM predictions on BLE RSSI and the con-
fidence from two-way ranging on UWB TOA in different 
environments. Table 2 shows our results in eight environ-
ment settings. The best result of BLE RSSI is obtained in 
the large room with LOS scenario (94.38 %) and the worst 
result is obtained in the staircase with an LOS scenario 
(91.18%). For BLE RSSI, the confidence difference is up 
to 2.7% considering LOS and NLOS and 3.2% for different 
room sizes. The average confidence of BLE RSSI is 92.84%. 
The best and worst results of TOA are 94.63% and 87.5% in 
the medium room and staircase respectively. The confidence 
difference of TOA is 7.08% and 6.49% for varied room size 
and multipath scenarios, respectively. UWB TOA has 0.5% 
more confidence than BLE RSSI. Table 3 shows confidence 
for various postures and on-body locations described in 
Fig. 1b. First, we keep the user behavior fixed (both testers 
hold their phones in hand) and discuss the effect of user 
postures. Tester1 is the person who holds the transmitter 
and Tester2 holds the receiver. For the BLE RSSI approach, 
confidence is 2.43% higher if Tester1 was standing, com-
pared to results when Tester1 was sitting. The best result is 
obtained when both testers are sitting, which is 94.34%. and 

Table 2   Effect of environment on confidence

Environment Confidence (%) Confidence (%)

Room size Multipath 
scenario

BLE RSSI (GBM) UWB TOA

Medium room LOS 94.02 94.19
NLOS 93.30 94.63

Large room LOS 94.38 94.43
NLOS 93.04 94.58

Hallway LOS 92.18 93.85
NLOS 91.79 94.34

Stairway LOS 91.18 94.04
NLOS 93.68 87.55
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the worst result of 90.3% is obtained when Tester1 is sitting 
and Tester2 is sitting. Thus, we conclude that different pos-
tures can cause up to 3.95% confidence. However, different 
postures do not cause huge variations in the result of UWB. 
As shown in the last column in Table 3, the maximum confi-
dence difference for various postures and on-body locations 
is 0.68%. To compare the effect of on-body location of the 
device, we kept the postures fixed (sitting and standing). The 
confidence differences are 4% and 1.86% for BLE RSSI and 
UWB TOA, respectively. The change of on-body location 
affected BLE RSSI more, while the change in the multipath 
environment affected UWB TOA more.

In this section, we presented an empirical compara-
tive performance evaluation of proximity detection for the 
social distance using the RSSI of the BLE and TOA of the 
DecaWave UWB devices. To evaluate the performance, we 
used the confidence on whether a tester is within the social 
distance (6 feet) as the primary criterion. We provided a 
novel theoretical foundation with classical estimation the-
ory using the CRLB to develop bounds for the confidence. 
Then we compared the performance of UWB TOA obtained 
by a two-way ranging algorithm with a BLE RSSI-based 
machine learning algorithm against these bounds. We found 
that for both UWB TOA and BLE RSSI, the empirical result 
is almost the same as the theoretical bound if the ground 
truth is far from the boundary (6 feet). However, both the 
theoretical bound and the empirical result have the worst 
performance when approaching the boundary. The theoreti-
cal foundations show that the average confidence of UWB 
TOA estimation for the distance between 3 and 12 feet is 
96.98%, which is 1.58% better than utilizing BLE RSSI. To 
validate the theoretical bounds and evaluate the confidence 
provided by BLE RSSI and UWB TOA, we collected a novel 
dataset in fifteen scenarios in order to obtain a fair com-
parative analysis. For both LOS and OLOS situations, we 
conducted experiments in three flat environments (medium 
and large rooms, and corridor) and an environment where 
the transmitter and receiver are placed at different heights 
(stairway). The 7 other scenarios involved varying the test-
er’s postures (sitting and standing) and the places where 
one tester carried the receiver (in hand, jacket pocket, pants 

pocket, and purse). A machine learning model based on the 
GBM algorithm was trained using BLE RSSI data for each 
scenario to estimate the confidence. For the UWB, the TOA 
is obtained directly using the Decawave two-way ranging 
algorithm. UWB TOA outperforms BLE RSSI in almost 
all environments except the staircase environments with a 
NLOS situation and both testers were sitting. For BLE RSSI, 
different postures caused up to 3.95% confidence difference. 
However, the maximum confidence difference obtained by 
UWB TOA was only 0.68%. On average, the confidence of 
UWB TOA was 0.75% better than that of BLE RSSI, which 
means that the proposed theoretical bound is consistent with 
the empirical result. Theoretically, the proposed theoretical 
foundation gives us a relation between the traditional CRLB 
and the confidence of proximity detection and a bound for 
confidence as a function of distance. Practically, the theo-
retical foundation provides an approach to analyze whether 
a technique is suitable for solving the proximity detection 
problem.

5 � Conclusion

The availability of TOA-based UWB positioning in emerg-
ing, inexpensive IoT devices and the 5G cellular networks 
has created an alternative to RSSI-based BLE positioning for 
proximity detection for social distancing. The UWB solution 
operates in real-time without a need for training a complex 
ML algorithm for RSSI-based ranging. In this paper, we pre-
sented an empirical comparative performance evaluation of 
proximity detection for social distance using BLE RSSI fea-
tures classified offline using a complex GBM ML algorithm 
and TOA data from the DecaWave UWB devices using a 
simple real-time, memoryless algorithm embedded on the 
device. To evaluate the performance, we used the confidence 
on whether a tester is within the social distance (6 feet) as 
the primary criterion. We provided a novel theoretical foun-
dation with classical estimation theory using the CRLB to 
develop bounds for the confidence. Then we compared the 
performance of UWB TOA obtained using a two-way rang-
ing algorithm with BLE RSSI-based approach using a GBM 

Table 3   Effect of user behavior 
(Tester’s posture and location of 
phone) on confidence

Posture Device on-body location Confidence (%) Confidence (%)

Tester1 Tester2 Tester1 Tester2 BLE RSSI (GBM) UWB TOA

Sitting Standing In Hand In Hand 93.39 93.55
Jacket Pocket 94.28 94.34
Pants Pocket 90.28 93.26
In Purse 93.99 95.12

Sitting In Hand In Hand 94.34 93.75
Standing Standing In Hand In Hand 92.49 93.07

Sitting In Hand In Hand 90.39 93.31
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ML algorithm against these bounds. We demonstrated that 
even without any training, the UWB TOA can outperform 
BLE RSSI using the GBM ML algorithm. We expect that 
the next generation of social distance monitoring systems 
transfer from RSSI based to TOA based technologies.
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