Skip to main content
Log in

Intelligent Empirical Model for Interference Mitigation in 5G Mobile Network at Sub-6 GHz Transmission Frequency

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

The quality of the signal received at any location in communication channel depends on the degree of losses and attenuation experience along its path. The existing models are not suitable for 5G network propagation due to heavy channel interference and signal loss applicable at millimeter wave (mmWave) spectrum. The issues of Path Loss (PL) and signal interference in 5G New Radio (NR) network needs special attention. It is expected that 5G NR and 4G LTE-A networks will coexist for a very long time using the existing infrastructure. Hence, it is important to develop a good model to mitigate signal attenuation and co-channel interference that comes with the deployment of the 5G NR network. The existing models and measured data were compared to find out the closest model to the measured value. This paper proposed a modify Okumura-Hata (Ok-Hata) model for signal propagation in new 5G network. Also, an improved Autoregressive Particle Swarm Intelligent (APSI) algorithm was presented to enhance the proposed model for better performance. The modified Ok-Hata model outperformed all the existing models. The modified model has the potential to mitigate the effect of interference in 5G NR at 3.5 GHz frequency. The proposed new model has the capacity to solve some network issues such as; path loss, co-channel interference in 5G network. The result shows that there was no signal interference between the existing, and modified models. The result also shows that enhanced APSI is suitable for 5G NR network planning in Abuja, Nigeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. O. Akande, F. A. Semire and Z. K. Adeyemo, Performance analysis and optimization of COST-231-Hata model for mobile communication in Nigeria, International Journal of Computer Applications, Vol. 173, No. 6, pp. 4–9, 2017.

    Article  Google Scholar 

  2. R. C. Opara, C. K. Agubor and A. O. Akande, Interference mitigation in wireless communication—a tutorial on spread spectrum technology, International Journal of Wireless and Microwave Technologies, Vol. 5, pp. 26–34, 2021. https://doi.org/10.5815/ijwmt.2021.05.04.

    Article  Google Scholar 

  3. M. K. Aied and J. A. Ahmed, Performance evaluation of path loss in mobile channel for Karada District in Baghdad City, Engineering And Technology Journal, Vol. 30, No. 17, pp. 3023–3037, 2012.

    Article  Google Scholar 

  4. L. S. Ezema, A. O. Akande, C. K. Agubor, O. K. Akinde and S. O. Okozi, Development of a new diversity scheme in 5G network at 28 GHz millimter-wave frequency for digital mobile system, International Journal of Wireless and Microwave Technologies (IJWMT), Vol. 11, No. 1, pp. 47–62, 2021.

    Article  Google Scholar 

  5. O. C. Nosiri, N. C. Onuekwusi, A. O. Akande and E. U. Ekwueme, A new hybrid diversity combining scheme for mobile radio communication systems over Nakagami fading chanel, International Journal of Computer Science & Information Technology (IJCSIT), Vol. 12, No. 3, pp. 1–15, 2020.

    Article  Google Scholar 

  6. C. K. Agubor, I. Akwukwuegbu, A. O. Akande and S. O. Okozi, A comprehensive review on the feasibility and challenges of millimeter wave in emerging 5G mobile communication, Advances in Science, Technology and Engineering Systems Journal (ASTESJ), Vol. 4, No. 3, pp. 138–144, 2019.

    Article  Google Scholar 

  7. K. A. Cosmas, O. A. Akande and R. O. Chinedu, On-off switching and sleep-mode energy management techniques in 5G mobile wireless communications—a review, International Journal of Wireless and Microwave Technologies (IJWMT), Vol. 12, No. 6, pp. 40–47, 2022. https://doi.org/10.5815/ijwmt.2022.06.05.

    Article  Google Scholar 

  8. Z. K. Adeyemo, A. O. Akande and A. O. Fawole, Investigation of existing prediction models for UMTS signal in Owerri, Nigeria, International Journal of Antenna and propagation (I.Re.C.A.P), Vol. 7, No. 4, pp. 290–297, 2017.

    Google Scholar 

  9. Z. S. Khan, M. Chowdhury, M. Rahman and M. Islam, Performance evaluation of 5G millimeter-wave-based vehicular communication for connected vehicles, IEEE Access, Vol. 10, pp. 31031–31042, 2022. https://doi.org/10.1109/ACCESS.2022.3158669.

    Article  Google Scholar 

  10. H. Fourati, R. Maaloul and L. A. Chaari, Survey of 5G network systems: challenges and machine learning approaches, International Journal of Machine Learning and Cybernetics, Vol. 12, pp. 385–431, 2021.

    Article  Google Scholar 

  11. W. Dale, Basics of millimeter wave technology—technical articles, 2021. https://www.allaboutcircuits.com/technical-articles/basics-of-millimeter-wave-mmwave-technology/. Accessed on 31/12/21

  12. S. Indoria, Deployment of 5G networks challenges for developing countries, ICT Analysis and Applications (Springer), Vol. 7, No. 8, pp. 255–262, 2020. https://doi.org/10.1007/978-981-15-0630-7_25.

    Article  Google Scholar 

  13. B. Shen, Z. Lei, X. Huang and Q. Chen, An interference contribution rate based small cells on/off switching algorithm for 5G dense heterogeneous networks, IEEE Access, Vol. 6, pp. 757–769, 2018.

    Article  Google Scholar 

  14. M. Ree, G. Mantas, A. Radwan, S. Mumtaz, J. Rodriguez and I. Otung, Key management for beyond 5G mobile small cells: a survey, IEEE Access, Vol. 7, pp. 200–236, 2019.

    Google Scholar 

  15. R. Ashikur, A. Salsabil and R. Raqeebir, Feasibility and challenges of 5G network deployment in least developed countries (LDC), Wireless Sensor Network, Vol. 13, pp. 1–16, 2021. https://doi.org/10.4236/wsn.2021.131001.

    Article  Google Scholar 

  16. M. S. Hossain, F. Tariq, G. A. Safdar, N. H. Mahmood and M. R. Khandaker, Multi-layer soft frequency reuse scheme for 5G heterogeneous cellular networks, in: Proeedings of the IEEE Globecom Workshops (GC Wkshps), Singapore, Vol. 4, No. 8, pp. 1–6, 2017.

  17. M. Jansen, and P. Beaton, 5G vs. 4G: how will the newest network improve on the last? pp. 1–24, 2021. https://www.digitaltrends.com/mobile/5g-vs-4g/?amp. Accessed on 21/01/22

  18. F. A. Semire, A. O. Akande, Z. K. Adeyemo and C. K. Agubor, Optimization of modified empirical model in 2.3 GHz long term evolution network. Case study of FUTO, Radioelectronics and Communications Systems, Vol. 65, No. 1, pp. 27–47, 2022.

    Article  Google Scholar 

  19. O. Ogunbiyi, A. O. Akande, C. K. Agubor and A. W. Akande, Performance of cooperative relay protocol in 5G mobile communication network over Rayleigh fading channel, International Journal of Mobile Communications, Vol. 21, No. 4, pp. 1, 2023. https://doi.org/10.1504/IJMC.2023.10042868.

    Article  Google Scholar 

  20. C. K. Agubor, E. E. Atimati and A. O. Akande, 5G wireless network mobility management and security issues: an overview of existing technologies, Futo Journal Series (FUTOJNLS), Vol. 4, No. 2, pp. 84–93, 2018.

    Google Scholar 

  21. O. Mayada, E. R. Salwa and A. Bassant, Interference mitigation and power minimization in 5G heterogeneous networks, Electronics, Vol. 10, No. 1723, pp. 1–21, 2021. https://doi.org/10.3390/electronics10141723.

    Article  Google Scholar 

  22. L. Huo, D. Jiang and Z. Lv, Soft frequency reuse-based optimization algorithm for energy efficiency of multi-cell networks, International Journal of Computer and Electronics Engineering, Vol. 66, pp. 316–331, 2018.

    Article  Google Scholar 

  23. M. U. Siddiqui, F. Qamar, F. Ahmed and R. Hassan, Interference management in 5G and beyond network: requirements, challenges and future directions, IEEE Access, Vol. 9, pp. 68932–68965, 2021. https://doi.org/10.1109/ACCESS.2021.3073543.

    Article  Google Scholar 

  24. O. T. H. Alzubaidi, M. N. Hindia, K. Dimyati, K. A. Noordin, A. N. A. Wahab, F. Qamar and R. Hassan, Interference challenges and management in B5G network design: a comprehensive review, Electronics, Vol. 11, pp. 2842, 2022. https://doi.org/10.3390/electronics11182842.

    Article  Google Scholar 

  25. A. L. Imoize and A. I. Dosunmu, Path loss characterization of LTE network for Lagos, Nigeria, Jordan Journal of Electrical Engineering, Vol. 4, No. 2, pp. 114–128, 2018.

    Google Scholar 

  26. J. O. Eichie, O. D. Oyedum, M. O. Ajewole and A. M. Aibinu, Comparative analysis of basic models and ANN based model for PL prediction, Progress in Electromagnetics Research M, Vol. 61, pp. 133–146, 2017.

    Article  Google Scholar 

  27. B. O. Omijeh and I. C. Nnaemeka, Determination of a PL model for LTE in FESTAC Town Lagos, International Journal of Scientific & Engineering Research, Vol. 9, No. 2, pp. 776–786, 2018.

    Google Scholar 

  28. A. L. Imoize and T. E. Ogunfuwa, Propagation measurements of a 4G network in Lagoon environment, Nigerian Journal of Technological Development, Vol. 16, No. 1, pp. 1–9, 2019.

    Article  Google Scholar 

  29. C. I. Abiodun and J. S. Ojo, Determination of probability distribution function for PL in wireless channels applications over microcellular environments of Ondo State, Nigeria, An International Scientific Journal, World Scientific News, Vol. 118, No. 2019, pp. 74–88, 2019.

    Google Scholar 

  30. E. T. Tchao, J. D. Gadze and J. O. Agyapong, Performance evaluation of a deployed LTE network, International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 9, No. 3, pp. 165–178, 2019.

    Google Scholar 

  31. F. S. Samidi, N. A. M. Radzi, W. S. H. M. W. Ahmad, F. Abdullah, M. Z. Jamaludin and J. A. Ismail, 5G new radio: dynamic time division duplex radio resource management approaches, IEEE Access, Vol. 4, pp. 1–17, 2021. https://doi.org/10.1109/ACCESS.2021.3104277.

    Article  Google Scholar 

  32. M. A. Abdulsattar, A. H. Salim and S. A. Majeed, 5G mobile systems, challenges and technologies: a survey 1, Journal of Theoretical and Applied Information Technology, Vol. 97, No. 11, pp. 3214–3226, 2019.

    Google Scholar 

  33. A. Lukowa and V. Venkata, Centralized UL/DL resource allocation for flexible TDD systems with interference cancellation, IEEE Transactions on Vehicular Technology, Vol. 68, No. 3, pp. 2443–2458, 2019.

    Article  Google Scholar 

  34. A. Elgam, Y. Balal and Y. Pinhasi, Study of 5G-NR-MIMO links in the presence of an interferer, Electronics, Vol. 10, No. 732, pp. 1–23, 2021. https://doi.org/10.3390/electronics10060732.

    Article  Google Scholar 

  35. R. Dangi, P. Lalwani, G. Choudhary and P. Giovanni, Study and investigation on 5G technology: a systematic review, Sensors, Vol. 22, No. 26, pp. 1–32, 2022. https://doi.org/10.3390/s22010026.

    Article  Google Scholar 

  36. K. A. Cosmas, A. O. Akande and R. O. Chinedu, On-off switching and sleep-mode energy management techniques in 5G mobile wireless communications: a review, International Journal of Wireless and Microwave Technologies, Vol. 6, pp. 40–47, 2022. https://doi.org/10.5815/ijwmt.2022.06.05.

    Article  Google Scholar 

  37. A. Ebrahim and E. Alsusa, Interference and resource management through sleep mode selection in heterogeneous networks, IEEE Transactions on Communications, Vol. 65, No. 1, pp. 257–269, 2017. https://doi.org/10.1109/TCOMM.2016.2623614.

    Article  Google Scholar 

  38. C. K. Agubor, W. A. Ahmed and A. O. Akande, Autoregressive modeling of mobile radio channel in LTE network, a case study of Ibadan City, Nigeria, in: 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NGERCON). pp. 105–112, 2017.

  39. J. Goldman, 5G isn't going to make your 4G LTE Phone Obsolete, pp. 1–7, 2022. https://www.cnet.com/tech/mobile/no-5g-isnt-going-to-make-your-4g-lte-phone-obsolete/. Accessed on 21/01/22

  40. F. Qamar, M. Siddiqui, M. Hindia and K. Dimyati, Propagation channel measurement at 38 GHz for 5G mm-wave communication network, in: Proc. IEEE Student Conf. Res. Develop. (SCOReD). pp. 1–6, 2018.

  41. Z. K. Adeyemo, O. K. Ogunremi and A. O. Akande, Genetic algorithm based optimization for long term evolution in Lagos, Nigeria, International Journal of Applied Science and Technology, Vol. 6, No. 2, pp. 79–88, 2016.

    Google Scholar 

  42. G. R. MacCartney and T. S. Rappaport, Study on 3GPP rural macrocell path loss models for millimeter wave wireless communications, in: 2017 IEEE International Conference on Communications (ICC), Paris, France. pp. 1–7, 2017.

  43. H. Tataria, K. Haneda, A. F. Molisch, M. Shafi and F. Tufvesson, Standardization of propagation models for terrestrial cellular systems: a historical perspective, International Journal of Wireless Information Networks, Vol. 28, pp. 20–44, 2020. https://doi.org/10.1007/s10776-020-00500-9.

    Article  Google Scholar 

  44. 3GPP TR 38.901 version 14.3.0 Release 14, 5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz, Technical Report, 2018. http://www.etsi.org/standards-search

  45. Okonji Emma, NCC to Auction Remaining Three 3.5 GHz Spectrum Slots in 24 Months, Says December 13 Sale Remains Sacrosanct, pp. 1–3, 2021. https://www.thisdaylive.com/index.php/2021/11/11/ncc-to-auction-remaining-three-3-5ghz-spectrum-slots-in-24-months-says-december-13-sale-re. Accessed 21/01/22

  46. C. Santosh and K. Dinesh, Path loss propagation models for wireless communication systems and its performance analysis, International Journal of Engineering and Management Science (IJEMS), Vol. 2, No. 3, pp. 37–43, 2015.

    Google Scholar 

  47. J. Kennedy and R. Eberhart, Particle swarm optimization, IEEE International Conference on Neural Network, Vol. 4, No. 1, pp. 1941–1948, 1995.

    Google Scholar 

  48. M. C. Zambrano-Bigia and R. Cleric, Particle swarm optimization: a baseline for future PSO improvements, in: IEEE Congress on Evolutionary Computation (CEC), Vol. 1, pp. 2335–2344, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akinyinka Olukunle Akande or Cosmas Kemdirim Agubor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akande, A.O., Agubor, C.K., Semire, F.A. et al. Intelligent Empirical Model for Interference Mitigation in 5G Mobile Network at Sub-6 GHz Transmission Frequency. Int J Wireless Inf Networks 30, 287–305 (2023). https://doi.org/10.1007/s10776-023-00603-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-023-00603-z

Keywords

Navigation