Abstract
The vision of a worldwide computing network of services that Service Oriented Computing paradigm and its most popular materialization, namely Web Service technologies, promote is a victim of its own success. As the number of publicly available services grows, discovering proper services is similar to finding a needle in a haystack. Different approaches aim at making discovery more accurate and even automatic. However they impose heavy modifications over current Web Service infrastructures and require developers to invest much effort into publishing and describing their services and needs. So far, the acceptance of this paradigm is mainly limited by the high costs associated with connecting service providers and consumers. This paper presents WSQBE+, an approach to make Web Service publication and discovery easier. WSQBE+ combines open standards and popular best practices for using external Web services with text-mining and machine learning techniques. We describe our approach and empirically evaluate it in terms of retrieval effectiveness and processing time, by using a data-set of 391 public services.
Similar content being viewed by others
Notes
UDDI, http://uddi.xml.org/
UNSPSC, http://www.unspsc.org/
NAICS, http://www.naics.com
Eclipse SDK, http://www.eclipse.org/
Java Web Services Development Pack, http://java.sun.com/webservices/jwsdp/index.jsp
Java Reflection API, http://java.sun.com/docs/books/tutorial/reflect/
Javadoc Tool Home, http://java.sun.com/j2se/javadoc
Eclipse Java Development Tools (JDT) Subproject, www.eclipse.org/jdt/
Java2WSDL, http://ws.apache.org/axis/
jUDDI, http://ws.apache.org/juddi/
References
Agichtein, E., Brill, E., Dumais, S., & Ragno, R. (2006). Learning user interaction models for predicting web search result preferences. In 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 3–10).
Al-Masri, E., & Mahmoud, Q. H. (2007). Qos-based discovery and ranking of web services. In International conference on computer communications and networks (pp. 529–534).
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval. Reading: Addition Wesley.
Bai, J., Nie, J.-Y., Cao, G., & Bouchard, H. (2007). Using query contexts in information retrieval. In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 15–22).
Birukou, A., Blanzieri, E., D’Andrea, V., Giorgini, P., & Kokash, N. (2007). Improving web service discovery with usage data. IEEE Software, 24(6), 47–54.
Blake, B., Kahan, D., & Nowlan, M. (2007). Context-aware agents for user-oriented web services discovery and execution. Distributed and Parallel Databases, 21(1), 39–58.
Blake, B., Nowlan, M., & Kahan, D. (2008). Taming web services from the wild. IEEE Internet Computing, 12(5), 62–69.
Bollmann, P. (1983). The normalized recall and related measures. In Proceedings of the 6th annual international ACM SIGIR conference on research and development in information retrieval (pp. 122–128).
Buckley, C., Salton, G., & Allan, J. (1994). The effect of adding relevance information in a relevance feedback environment. In SIGIR ’94: Proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval.
Burstein, M., Bussler, C., Zaremba, M., Finin, T., Huhns, M. N., Paolucci, M., et al. (2005). A semantic web services architecture. IEEE Internet Computing, 9(5), 72–81.
Cibrán, M. A., Verheecke, B., Vanderperren, W., Suvée, D., & Jonckers, V. (2007). Aspect-oriented programming for dynamic web service selection, integration and management. World Wide Web, 10(3), 211–242.
Crasso, M., Zunino, A., & Campo, M. (2008a). AWSC: An approach to web service classification based on machine learning techniques. Inteligencia Artificial, Revista Iberoamericana de IA, 37(12), 25–36.
Crasso, M., Zunino, A., & Campo, M. (2008b). Easy Web Service discovery: A query-by-example approach. Science of Computer Programming, 71(2), 144–164.
Dong, X., Halevy, A. Y., Madhavan, J., Nemes, E., & Zhang, J. (2004). Similarity search for web services. In (e)Proceedings of the thirtieth international conference on very large data bases (pp. 372–383).
Duftler, M., Mukhi, N., Slominski, A., & Weerawarana, S. (2001). Web services invocation framework (WSIF). In Workshop on object-oriented web services (OOWS ’01), ACM conference on object-oriented programming, systems, languages and applications (OOPSLA ’01). Tampa, Florida.
Erl, T. (2005). Service-oriented architecture (SOA): Concepts, technology, and design. Englewood Cliffs: Prentice Hall.
Fellbaum, C. (1989). WordNet: An electronic lexical database. Scituate: Bradford Books.
Fensel, D., Lausen, H., de Bruijn, J., Stollberg, M., Roman, D., & Polleres, A. (2006). Enabling semantic web services: The web service modelling ontology. New York: Springer.
Garofalakis, J., Panagis, Y., Sakkopoulos, E., & Tsakalidis, A. (2006). Contemporary web service discovery mechanisms. Journal of Web Engineering, 5(3), 265–290.
Gomez-Pérez, A., Corcho-García, O., & Fernández-López, M. (2003). Ontological engineering. New York: Springer.
Gotthelf, P., Zunino, A., Mateos, C., & Campo, M. (2008). GMAC: An overlay multicast network for mobile agent platforms. Journal of Parallel Distributed Computing, 68(8), 1081–1096.
Hatcher, E., & Gospodnetic, O. (2004). Lucene in action (in action series). Bellows Falls: Manning.
Heß, A., Johnston, E., & Kushmerick, N. (2004). ASSAM: A tool for semi-automatically annotating semantic web services. In International semantic web conference. Lecture notes in computer science (LNCS) (Vol. 3298, pp. 320–334).
Huhns, M., & Singh, M. (2005). Service-oriented computing: Key concepts and principles. IEEE Internet Computing, 9(1), 75–81.
Jennings, N., & Wooldridge, M. (1996). Software agents. IEE Review, 42(1), 17–20.
Joachims, T. (1997). A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In International conference on machine learning (pp. 143–151).
Johnson, R. (2005). J2EE development frameworks. Computer, 38(1), 107–110.
Kim, M.-C., & Choi, K.-S. (1999). A comparison of collocation-based similarity measures in query expansion. Information Processing & Management, 35(1), 19–30.
Kittredge, R. I. (1982). Sublanguages. American Journal of Computational Linguistics, 8(2), 79–84.
Korfhage, R. (1997). Information storage and retrieval. New York: Wiley.
Kozlenkov, A., Spanoudakis, G., Zisman, A., Fasoulas, V., & Cid, F. S. (2007). Architecture-driven service discovery for service centric systems. International Journal of Web Services research, 4(2), 82–113.
Losee, R. (1995). Sublanguage terms: Dictionaries, usage, and automatic classification. Journal of the American Society for Information Science, 46(7), 519–529.
Mateos, C., Crasso, M., Zunino, A., & Campo, M. (2006). Supporting ontology-based semantic matching of web services in MoviLog. In Advances in artificial intelligence, 2nd international joint conference: 10th Ibero-American conference on AI, 18th Brazilian AI symposium (IBERAMIA-SBIA 2006). Lecture notes in computer science (LNCS) (Vol. 4140).
McConnell, S. (2006). Software estimation: Demystifying the black art. Redmond: Microsoft.
McCool, R. (2005). Rethinking the semantic web. Part I. IEEE Internet Computing, 9(6), 88, 86–87.
McIlraith, S., & Martin, D. (2003) Bringing semantics to web services. IEEE Intelligent Systems, 18(1), 90–93.
Paolucci, M., & Sycara, K. (2003) Autonomous semantic web services. IEEE Internet Computing, 7(5), 34–41.
Papazoglou, M., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-oriented computing: State of the art and research challenges. Computer, 40(11), 38–45.
Papazoglou, M., & Heuvel, W.-J. (2007). Service oriented architectures: Approaches, technologies and research issues. The VLDB Journal, 16(3), 389–415.
Porter, M. (1997). An algorithm for suffix stripping. Readings in information retrieval (pp. 313–316).
Pu, K., Hristidis, V., & Koudas, N. (2006) Syntactic rule based approach toweb service composition. In ICDE ’06: Proceedings of the 22nd international conference on data engineering (p. 31).
Rocchio, J. (1971). Relevance feedback in information retrieval. In The smart retrieval system—experiments in automatic document processing (pp. 313–323).
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513–523.
Schmidt, C., & Parashar, M. (2004) A peer-to-peer approach to web service discovery. World Wide Web, 7(2), 211–229.
Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The semantic web revisited. IEEE Intelligent Systems, 21(3), 96–101.
Shamsfard, M., & Barforoush, A. A. (2004). Learning ontologies from natural language texts. International Journal of Human-Computer Studies, 60, 17–63.
Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. A. (2003). Adding semantics to web services standards. In The 2003 international conference on web services (pp. 395–401).
Spinellis, D. (2008). The way we program. IEEE Software, 25(4), 89–91.
Stairmand, M. (1997). Textual context analysis for information retrieval. SIGIR Forum, 31(SI), 140–147.
Stroulia, E., & Wang, Y. (2005). Structural and semantic matching for assessing web service similarity. International Journal of Cooperative Information Systems, 14(4), 407–438.
Vinoski, S. (2005). A time for reflection [software reflection]. IEEE Internet Computing, 9(1), 86–89.
Voorhees, E. (1993). Using WordNet to disambiguate word senses for text retrieval. In Proceedings of the 16th annual international ACM SIGIR conference on research and development in information retrieval (pp. 171–180).
Wang, H., Huang, J. Z., Qu, Y., & Xie, J. (2004). Web services: Problems and future directions. Journal of Web Semantics, 1(3), 309–320.
Weerawarana, S., Curbera, F., Leymann, F., Storey, T., & Ferguson, D. F. (2005). Web services platform architecture: SOAP, WSDL, WS-policy, WS-addressing, WS-BPEL, WS-reliable messaging, and more. Englewood Cliffs: Prentice Hall.
Whang, K.-Y., Ammann, A., Bolmarcich, A., Hanrahan, M., Hochgesang, G., Huang, K.-T., et al. (1987). Office-by-example: An integrated office system and database manager. ACM Transactions on Information Systems, 5(4), 393–427.
Witte, R., Li, Q., Zhang, Y., & Rilling, J. (2008). Text mining and software engineering: An integrated source code and document analysis approach. IET Software Journal, 2, 3–16.
Zhuge, H., & Liu, J. (2004). Flexible retrieval of web services. Journal of Systems and Software, 70(1–2), 107–116.
Acknowledgements
We thank Mariano Fischer and Matías Martinez for helping us implementing the query expansion techniques, the plug-in for Eclipse and structural matching techniques. We also thank the anonymous reviewers for their helpful comments and suggestions to improve the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Crasso, M., Zunino, A. & Campo, M. Combining query-by-example and query expansion for simplifying web service discovery. Inf Syst Front 13, 407–428 (2011). https://doi.org/10.1007/s10796-009-9221-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10796-009-9221-9