Skip to main content

Advertisement

Log in

A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

We study the long-term generation capacity investment problem of an independent power generation company (GenCo) that functions in an environment where GenCos perform business with both bilateral contracts (BC) and transactions in the day-ahead market (DAM). A fuzzy mixed integer linear programming model with a fuzzy objective and fuzzy constraints is developed to incorporate the impacts of imprecision/uncertainty in the economic environment on the calculation of the optimal value of the GenCo’s objective function. In formulating the fuzzy objective function we also include the potential impacts of climate change on the energy output of hydroelectric power plants. In addition to formulating and solving the capacity planning/investment problem, we also performed scenario-based (sensitivity) analysis to explore how investment decisions of the GenCos change when fuzziness (tolerance) in the maximum energy output of hydroelectric units and/or drought expectation increases. The proposed model is novel and investigates the effects of factors like drought expectations of climate changes, hydroelectric power plant investments, and other power generation technology investment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aktaş, Ö. (2014). Impacts of climate change on water resources of Turkey. Environmental Engineering and Management Journal, 13(4), 881–889.

    Google Scholar 

  • Andrade, E. M., Cosenza, J. P., Rosa, L. P., & Lacerda, G. (2012). The vulnerability of hydroelectric generation in the Northeast of Brazil: The environmental and business risks for CHESF. Renewable and Sustainable Energy Reviews, 16(8), 5760–5769.

    Article  Google Scholar 

  • Anugrah, P., Setiawan, A. A., & Budiarto, R. (2015). Evaluating micro hydro power generation system under climate change scenario in Bayang Catchment, Kabupaten Pesisir Selatan, West Sumatra. Energy Procedia, 65, 257–263.

    Article  Google Scholar 

  • Askari, M.T., Kadir, M. Z. A., Hizam, H. and Jasni, J. (2013), Evaluation of uncertainties on generation expansion, IEEE 7th International Power Engineering and Optimization Conference, 3–4 June, Langkawi, Malaysia.

  • Bai, L., Li, F., Cui, H., Jiang, T., Sun, H. and Zhu, J. (2015), Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty,» Applied Energy, In Press, Available online 6 November 2015, http://www.sciencedirect.com/science/article/pii/S0306261915013550.

  • Bakirtzis, G. A., Biskas, P. N., & Chatziathanasiou, V. (2012). Generation expansion planning by MILP considering midterm scheduling. Electric Power Systems Research, 86, 98–112.

    Article  Google Scholar 

  • Barforoushi, T., Moghaddam, M. P., Javidi, M. H., & Sheikh-El-Eslami, M. K. (2010). Evaluation of Regulatory Impacts on Dynamic Behavior of Investments in Electricity Markets: A New Hybrid DP/GAME Framework. IEEE Transactions on Power Systems, 25(4), 1978–1986.

    Article  Google Scholar 

  • Basaran, M. (2012), Termik Santraller (In Turkish) (Thermal Power Plants), World Energy Council Turkish National Committee Preparation of Feasibility Reports for Energy Investments Seminar, Ankara, Turkey.

  • Bellman, R. E., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), 141–164.

    Article  Google Scholar 

  • Can Lignite Operational Directorate, (2012), Tariffs for thermal power plants, available at http://www.cli.gov.tr/satis.asp, last Accessed date March 7 2016.

  • Cheng, O. K., & Lau, R. (2015). Big Data Stream Analytics for Near Real-Time Sentiment Analysis. Journal of Computer and Communications, 3(05), 189.

    Article  Google Scholar 

  • Cicogna, M. A. and Soares, S. (2001), Assessment of secondary energy in hydroelectric systems, 4th International Conference on Hydropower Development, 20–22 June, Bergen, Norway, pp. 55–60.

  • Delen, D. (2015). Real-world data mining: applied business analytics and decision making. FT Press. Upper Saddle River: New Jersey.

  • Delgado, D., & Carlo, J. (2013). Transmission network expansion planning under demand uncertainty and risk aversion. Electrical Power and Energy Systems, 44, 696–702.

    Article  Google Scholar 

  • Elektrik Piyasası Kanunu (2013), 6446 Sayılı Elektrik Piyasası Kanunu, T. C. Resmi Gazete, 28603, March 30, 2013.

  • Energy Exchange Istanbul (EXIST - EPIAS), (2015), Daily Report, 1 September 2015, available at https://rapor.epias.com.tr/rapor/xhtml/dgpGunlukRapor.xhtml, last Accessed date March 7 2016.

  • Foster, B. T., Kern, J. D., & Characklis, G. W. (2015). Mitigating hydrologic financial risk in hydropower generation using index-based financial instruments. Water Resources and Economics, 10, 45–67.

    Article  Google Scholar 

  • Gaudard, L. (2015). Pumped-storage project: A short to long term investment analysis including climate change. Renewable and Sustainable Energy Reviews, 49, 91–99.

    Article  Google Scholar 

  • Gomes, B. A., & Saraiva, J. T. (2009). Demand and generation cost uncertainty modelling in power system optimization studies. Electric Power Systems Research, 79(6), 1000–1009.

    Article  Google Scholar 

  • Gorenstin, B. G., Campodonico, N. M., Costa, J. P., & Pereira, M. V. F. (1993). Power system expansion planning under uncertainty. IEEE Transactions on Power Systems, 8(1), 129–136.

    Article  Google Scholar 

  • Gungor, Z., & Bozkurt, G. (1999). Economical comparison of imported energy sources in terms of long-term production planning. Energy, 24, 31–42.

    Article  Google Scholar 

  • Hamududu, B., & Killingtveit, A. (2012). Assessing climate change impacts on global hydropower. Energies, 5, 305–322.

    Article  Google Scholar 

  • Harrison, G. P., & Whittington, H. W. (2002). Susceptibility of the Batoka Gorge hydroelectric scheme to climate change. Journal of Hydrology, 264(1–4), 230–241.

    Article  Google Scholar 

  • Harrison, G. P., Whittington, H. W., & Wallace, A. R. (2003). Climate change impacts on financial risk in hydropower projects. IEEE Transactions on Power Systems, 18(4), 1324–1330.

    Article  Google Scholar 

  • Hertel, M., & Wiesent, J. (2013). Investments in information systems: A contribution towards sustainability. Information Systems Frontier, 15, 815–829.

    Article  Google Scholar 

  • Hobbs, B. F. (1995). Optimization methods for electric utility resource planning. European Journal of Operational Research, 83, 1–20.

    Article  Google Scholar 

  • Iacob, M. E., van Sinderen, M. J., Steenwijk, M., & Verkroost, P. (2013). Towards a reference architecture for fuel-based carbon management systems in the logistics industry. Information Systems Frontier, 15, 725–745.

    Article  Google Scholar 

  • International Renewable Energy Agency (IRENA) (2012), Renewable energy technologies: cost analysis series - wind power, available at http://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-WIND_POWER.pdf, last Accessed date March 7 2016.

  • Investing.com (2013), ABD - Devlet Tahvilleri (In Turkish) (U.S. Government Bonds), available at http://tr.investing.com/rates-bonds/usa-government-bonds?maturity_from=90&maturity_to=180 last Accessed date August 22 2013.

  • IPCC (2007). In Core Writing Team, R. K. Pachauri, & A. Reisinger (Eds.), Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.

  • Jahromi, M. E., Ehsan, M., & Meyabadi, A. F. (2012). A dynamic fuzzy interactive approach for DG expansion planning. International Journal of Electrical Power & Energy Systems, 43(1), 1094–1105.

    Article  Google Scholar 

  • Jin, S. W., Li, Y. P., Huang, G. H. and Zhang, K. (2016), Inexact mixed-integer programming with interval-valued membership function for sustainable power-generation capacity planning, Journal of Cleaner Production, Available online http://www.sciencedirect.com/science/article/pii/S0959652616002432.

  • Kagiannas, A. G., Askounis, D. T., & Psarras, J. (2004). Power generation planning: a survey from monopoly to competition. Electrical Power and Energy Systems, 26(6), 413–421.

    Article  Google Scholar 

  • Kaunda, C. S., Kimambo C. Z. and Nielsen, T. K. (2012), Hydropower in the context of sustainable energy supply: a review of technologies and challenges, ISRN Renewable Energy, 2012, 730631, 1–15.

  • Kazempour, S. J., Conejo, A. J., & Ruiz, C. (2012). Strategic Generation Investment Considering Futures and Spot Markets. IEEE Transactions on Power Systems, 27(3), 1467–1476.

    Article  Google Scholar 

  • Lin, Q. G., Wu, Q., Huang, G. H., & Zhai, M. Y. (2014). An interval parameter optimization model for sustainable power systems planning under uncertainty. International Journal of Electrical Power & Energy Systems, 54, 631–641.

    Article  Google Scholar 

  • Maran, S., Volonterio, M., & Gaudard, L. (2014). Climate change impacts on hydropower in an alpine catchment. Environmental Science & Policy, 43, 15–25.

    Article  Google Scholar 

  • Marin, A., & Salmeron, J. (1998). Electric capacity expansion under uncertain demand: decomposition approaches. IEEE Transactions on Power Systems, 3(2), 333–339.

    Article  Google Scholar 

  • Mo, B., Hegge, J., & Wangensteen, I. (1991). Stochastic generation expansion planning by means of stochastic dynamic programming. IEEE Transactions on Power Systems, 6(2), 662–668.

    Article  Google Scholar 

  • Munoz, J. R., & Sailor, D. J. (1998). A modelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation. Energy Conversion and Management, 39(14), 1459–1469.

    Article  Google Scholar 

  • OECD (2013), Water and climate change adaptation: policies to navigate uncharted waters, available at http://www.oecd.org/env/resources/Turkey.pdf., last Accessed date April 30 2015.

  • Olsina, F., & Haubrich, H. (2006). Modeling long-term dynamics of electricity markets. Energy Policy, 34(12), 1411–1433.

    Article  Google Scholar 

  • Pereira, A. J. C., & Saraiva, J. T. (2010). A decision support system for generation expansion planning in competitive electricity markets. Electric Power Systems Research, 80, 778–787.

    Article  Google Scholar 

  • Petroleum Pipeline Corporation (2012), Tariffs January 2012, available at http://www.botas.gov.tr/index.asp, last Accessed date January 7 2012.

  • PMUM (2014), Piyasa Mali Uzlaştırma Merkezi - Genel Raporlar - Piyasa Gelişim Raporları - Dönemlik Piyasa Hacimleri, available at https://rapor.pmum.gov.tr/rapor/xhtml/donemlikPiyasaHacim.xhtml, last accessed date January 12 2015.

  • Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning - A review. Renewable and Sustainable Energy Reviews, 8(4), 365–381.

    Article  Google Scholar 

  • Prado, F. A., Athayde, S., Mossa, J., & Bohlman, S. (2016). How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renewable and Sustainable Energy Reviews, 53, 1132–1136.

    Article  Google Scholar 

  • Ross, T. (1995), Fuzzy logic with engineering applications, McGraw-Hill Inc., USA.

  • Sample, J. E., Duncan, N., Ferguson, M., & Cooksley, S. (2015). Scotland’s hydropower: Current capacity, future potential and the possible impacts of climate change. Renewable and Sustainable Energy Reviews, 52, 111–122.

    Article  Google Scholar 

  • Samuelson, D. A. (2013). “Analytics: Key to Obama’s Victory” ORMS Today, February Issue, 20–24.

  • Senkal, A. and Cetin, N. S. (2009), Türkiye’de Kurulu Olan Büyük Güçlü Rüzgar Santrallerinin Kapasite Faktörlerine Genel Bir Bakış (In Turkish) (Big Strong Wind Farms in Turkey with the Board Overview of the Capacity Factor), Ege Bolgesi Enerji Forumu (Aegean Region Energy Forum), Denizli, Turkey.

  • Shadman, F., Sadeghipour, S., Moghavvemi, M., & Saidur, R. (2016). Drought and energy security in key ASEAN countries. Renewable and Sustainable Energy Reviews, 53, 50–58.

    Article  Google Scholar 

  • Sivrikaya, B. T., & Cebi, F. (2016). Long-Termed Investment Planning Model for a Generation Company Operating in both Bilateral Contract and Day-Ahead Markets, International Journal of Information and. Decision Sciences, 8(1), 24–52.

    Google Scholar 

  • Streimikiene, D., & Siksnelyte, I. (2014). Electricity market opening impact on investments in electricity sector. Renewable and Sustainable Energy Reviews, 29, 891–904.

    Article  Google Scholar 

  • Szyperski, C., Petitclerc, M., & Barga, R. (2016). Three Experts on Big Data Engineering. IEEE Software, 33(2), 68–72.

    Article  Google Scholar 

  • Tekiner-Mogulkoc, H., Coit, D. W., & Felder, F. A. (2015). Mean-risk stochastic electricity generation expansion planning problems with demand uncertainties considering conditional-value-at-risk and maximum regret as risk measures. Electrical Power and Energy Systems, 73, 309–317.

    Article  Google Scholar 

  • Turkish Electricity Transmission Corporation Research (2012), Turkish electrical energy 10-year generation capacity projection, planning and coordinatıon department, available at http://www.teias.gov.tr/YayinRapor/APK/projeksiyon/KAPASITEPROJEKSIYONU2012.pdf, last Accessed date March 7 2016.

  • U.S. Energy Information and Administration (2013a), Levelized cost of new generation resources in the annual energy outlook, available at http://www.eia.gov/forecasts/aeo/pdf/electricity_generation.pdf, last accessed date March 7, 2016.

  • U.S. Energy Information and Administration (2013b), Updated capital cost estimates for utility scale electricity generating plants, Available at http://www.eia.gov/forecasts/capitalcost/pdf/updated_capcost.pdf, last Accessed date March 7 2016.

  • Uzlu, E., Akpınar, A., Öztürk, H. T., Nacar, S., & Kankal, M. (2014). Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey. Energy, 69, 638–647.

    Article  Google Scholar 

  • Villar, J., & Rudnick, H. (2003). Hydrothermal market simulator using game theory: assessment of market power. IEEE Transactions on Power Systems, 18, 91–98.

    Article  Google Scholar 

  • Wang, B., Liang, X. J., Zhang, H., Wang, L., & Wei, Y. M. (2014). Vulnerability of hydropower generation to climate change in China: Results based on grey forecasting model. Energy Policy, 65, 701–707.

    Article  Google Scholar 

  • Yildirim, N., Erkan, K., & Ozturk, S. (2006). Power generation expansion planning with adaptive simulated annealing genetic algorithm. International Journal of Energy Research, 30, 118–1199.

    Article  Google Scholar 

  • Yüksek Planlama Kurulu (2009), Elektrik Enerjisi Piyasası ve Arz Güvenliği Strateji Belgesi, available at http://www.enerji.gov.tr/yayinlar_raporlar/Arz_Guvenligi_Strateji_Belgesi.pdf., last Accessed date December 28 2013.

  • Zhu, J., & Chow, M. Y. (1997). A review of emerging techniques on generation expansion planning. IEEE Transactions on Power Systems, 12(4), 1722–1728.

    Article  Google Scholar 

  • Zikopoulos, P., DeRoos, D., Parasuraman, K., Deutsch, T., Corrigan, D., Giles, J. (2013). Harness the power of big data,. McGraw-Hill Publishing, NY: New York.

  • Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55.

    Article  Google Scholar 

  • Zimmermann, H. J. (1991), Fuzzy set theory and its applications, New York: Springer Science +Business Media, LLC, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dursun Delen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivrikaya, B.T., Cebi, F., Turan, H.H. et al. A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts. Inf Syst Front 19, 975–991 (2017). https://doi.org/10.1007/s10796-016-9707-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-016-9707-1

Keywords

Navigation