Skip to main content

Advertisement

Log in

Predictive maintenance: strategic use of IT in manufacturing organizations

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

A combination of big data and predictive analytics orchestrated through the Internet of Things (IoT) offers many opportunities for researchers in Information Systems, Operations Management and Strategy to look at old problems in new ways, and to identify completely new research areas. While there is much hype, little research has been conducted that informs companies about how to profitably integrate the IoT with strategic or operational processes. This paper views the IoT through the lens of predictive maintenance -- the use of real-time data and predictive analytics algorithms to dynamically manage preventive maintenance policies. These are being used by numerous manufacturing organizations to transition from product-oriented to service-oriented business models. In particular, we analyze optimal preventive maintenance policies in an environment where equipment is subject to a deterioration, which shifts it from its initial, fully-productive state, having a specified, age-dependent failure rate to a less-productive or deteriorated state, having a different, presumably higher, age-dependent failure rate. The deterioration, itself, is a random process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmadi, R., & Newby, M. (2011). Maintenance scheduling of a manufacturing system subject to deterioration. Reliability Engineering & System Safety, 96(10), 1411–1420.

    Article  Google Scholar 

  • Ajami, S., & Teimouri, F. (2016). Features and application of wearable biosensors in medical care. Journal of Research in Medical Sciences, 20(12), 1208–1215.

    Article  Google Scholar 

  • Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., & Marrocco, G. (2014). RFID technology for IoT-based personal healthcare in smart spaces. Internet of Things Journal, IEEE, 1(2), 144–152.

    Article  Google Scholar 

  • Andersson, P., & Mattsson, L. G. (2015). Service innovations enabled by the “internet of things”. IMP Journal, 9(1), 85–106.

    Article  Google Scholar 

  • Antoniou, A., Valchinov, E. S., Chatzigiannakis, I., Kalogeras, A. P., Alexakos, C., & Konstantinopoulos, P. (2015). Patriot: delivering instant heart observation with a miniature wearable ECG and cloud platform. In Proceedings of the 19th Panhellenic Conference on Informatics (pp. 177–182). ACM.

  • Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: a survey. Computer Networks, 54(15), 2787–2805.

    Article  Google Scholar 

  • Baden-Fuller, C., & Haefliger, S. (2013). Business models and technological innovation. Long Range Planning, 46(6), 419–426.

    Article  Google Scholar 

  • Banker, R. D., Bardhan, I. R., Chang, H., & Lin, S. (2006). Plant information systems, manufacturing capabilities, and plant performance. MIS Quarterly, 30(2), 315–337.

  • Bensoussan, A., & Sethi, S. P. (2007). The machine maintenance and sale age model of Kamien and Schwartz revisited. Management Science, 53(12), 1964–1976.

    Article  Google Scholar 

  • Bensoussan, A., Feng, Q., & Sethi, S. P. (2015). Integrating equipment investment strategy with maintenance operations under uncertain failures. Annals of Operations Research, 1–34. doi:10.1007/s10479-015-1862-0.

  • Bharadwaj, A., El Sawy, O., Pavlou, P., & Venkatraman, N. (2013). Digital business strategy: toward a next generation of insights. MIS Quarterly, Special Issue: Digital Business Strategy, 37(2), 471–482.

    Google Scholar 

  • Bi, Z., Da Xu, L., & Wang, C. (2014). Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on Industrial Informatics, 10(2), 1537–1546.

    Article  Google Scholar 

  • Bughin, J., Chui, M., & Manyika, J. (2013). Ten IT-enabled business trends for the decade ahead. McKinsey Quarterly, 13(May), 1–13.

  • Chen, M., & Feldman, R. M. (1997). Optimal replacement policies with minimal repair and age-dependent costs. European Journal of Operational Research, 98(1), 75–84.

    Article  Google Scholar 

  • Chien, Y. H. (2009). A number-dependent replacement policy for a system with continuous preventive maintenance and random lead times. Applied Mathematical Modelling, 33(3), 1708–1718.

    Article  Google Scholar 

  • Chien, Y. H., & Sheu, S. H. (2006). Extended optimal age-replacement policy with minimal repair of a system subject to shocks. European Journal of Operational Research, 174(1), 169–181.

    Article  Google Scholar 

  • Conway, J. (2016). The industrial internet of things: an evolution to a smart manufacturing enterprise, Schneider Electric, http://www.mcrockcapital.com/uploads/1/0/9/6/10961847/schneider-an_evolution_to_a_smart_manufacturing_enterprise.pdf. Downloaded 15 Nov 2016).

  • Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: a survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.

    Article  Google Scholar 

  • Daugherty, P., Banerjee, P., Negm, W. & Alter, A. E. (2015). Driving unconventional growth through the industrial internet of things, Accenture (https://www.accenture.com/us-en/_acnmedia/Accenture/next-gen/reassembling-industry/pdf/Accenture-Driving-Unconventional-Growth-through-IIoT.pdf Downloaded 15 July 2016).

  • Davenport, T. H. (2013a). Process innovation: reengineering work through information technology. Boston: Harvard Business Press.

    Google Scholar 

  • Davenport, T. H. (2013b). Analytics 3.0. Harvard Business Review, 91(12), 64–72.

    Google Scholar 

  • Drnevich, P. L., & Croson, D. C. (2013). Information technology and business-level strategy: toward an integrated theoretical perspective. MIS Quarterly, 37(2), 483–509.

    Article  Google Scholar 

  • General Electric Company. (2013). Beyond the break-fix model: predictive services to leverage GE’s record $229 billion backlog. GE Reports, October 18, 2013. http://www.gereports.com/beyond-the-break-fix-model/. Accessed Jan 2014.

  • Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for maximum impact. MIS Quarterly, 37(2), 337–355.

    Article  Google Scholar 

  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  • Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.

    Article  Google Scholar 

  • IIC. (2016). Industrial internet consortium, IIC Quarterly Report February 2016. http://www.iiconsortium.org/pdf/2015-12_Quarterly_Final_Feb_2016.pdf. Downloaded 15 July 2016.

  • Ji, Y., Kumar, S., Mookerjee, V. S., Sethi, S. P., & Yeh, D. (2011). Optimal enhancement and lifetime of software systems: a control theoretic analysis. Production and Operations Management, 20(6), 889–904.

    Article  Google Scholar 

  • Kamien, M. I., & Schwartz, N. L. (1971). Optimal maintenance and sale age for a machine subject to failure. Management Science, 17(8), B–495.

    Article  Google Scholar 

  • Kastalli, I. V., & Van Looy, B. (2013). Servitization: disentangling the impact of service business model innovation on manufacturing firm performance. Journal of Operations Management, 31(4), 169–180.

    Article  Google Scholar 

  • Kastalli, I. V., Van Looy, B., & Neely, A. (2013). Steering manufacturing firms towards service business model innovation. California Management Review, 56(1), 100–123.

    Article  Google Scholar 

  • Kletz, T. A. (1990). Critical aspects of safety and loss prevention. London: Butterworth-Heinemann.

  • Lakhani, K. R., Iansiti, M., & Herman K (2014). GE and the Industrial Internet. Harvard Business School Case 614–032. (Revised March 2015.)

  • Li, S., Da Xu, L., & Zhao, S. (2015). The internet of things: a survey. Information Systems Frontiers, 17(2), 243–259.

    Article  Google Scholar 

  • Loock, C. M., Staake, T., & Thiesse, F. (2013). Motivating energy-efficient behavior with green IS: an investigation of goal setting and the role of defaults. MIS Quarterly, 37(4), 1313–1332.

    Article  Google Scholar 

  • Malhotra, A., Melville, N. P., & Watson, R. T. (2013). Spurring impactful research on information systems for environmental sustainability. MIS Quarterly, 37(4), 1265–1274.

    Article  Google Scholar 

  • Manyika, J., Chui, M, Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D. (2015). The internet of things: mapping the value beyond the hype, McKinsey Global Institute (http://www.mckinsey.com/insights/business_technology/the_internet_of_things_the_value_of_digitizing_the_physical_world. Downloaded 15 Sept 2016).

  • March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology. Decision Support Systems, 15(4), 251–266.

    Article  Google Scholar 

  • Panagiotidou, S., & Tagaras, G. (2007). Optimal preventive maintenance for equipment with two quality states and general failure time distributions. European Journal of Operational Research, 180(1), 329–353.

    Article  Google Scholar 

  • Panagiotidou, S., & Tagaras, G. (2008). Evaluation of maintenance policies for equipment subject to quality shifts and failures. International Journal of Production Research, 46(20), 5761–5779.

    Article  Google Scholar 

  • Porter, M. E., & Heppelmann, J. E. (2014). How smart, connected products are transforming competition. Harvard Business Review, 92(11), 64–88.

    Google Scholar 

  • Setayeshmehr, A., Akbari, A., Borsi, H., & Gockenbach, E. (2004). A procedure for diagnosis and condition based maintenance for power transformers. In Electrical Insulation, 2004. Conference Record of the 2004 I.E. International Symposium on (pp. 504–507). IEEE.

  • Sloan, T. (2008). Simultaneous determination of production and maintenance schedules using in-line equipment condition and yield information. Naval Research Logistics (NRL), 55(2), 116–129.

    Article  Google Scholar 

  • Stedman, C. (2016). Predictive maintenance software points to machinery problems. TechTarget IoT Agenda (http://internetofthingsagenda.techtarget.com/feature/Predictive-maintenance-software-points-to-machinery-problems?utm_content=control&utm_medium=EM&asrc=EM_ERU_61595874&utm_campaign=20160728_ERU%20Transmission%20for%2007/28/2016%20(UserUniverse:%202131903)_myka-reports@techtarget.com&utm_source=ERU&src=5536533. Downloaded 28 Sept 2016).

  • Tao, F., Cheng, Y., Da Xu, L., Zhang, L., & Li, B. H. (2014). CCIoT-CMfg: Cloud computing and internet of things-based cloud manufacturing service system. Industrial Informatics, IEEE Transactions on, 10(2), 1435–1442.

    Article  Google Scholar 

  • Tsai, C. W., Lai, C. F., Chiang, M. C., & Yang, L. T. (2014). Data mining for internet of things: a survey. Communications Surveys & Tutorials, IEEE, 16(1), 77–97.

    Article  Google Scholar 

  • VanderMeer, D., Dutta, K., & Datta, A. (2012). A cost-based database request distribution technique for online e-commerce applications. MIS Quarterly, 36(2), 479–507.

    Article  Google Scholar 

  • Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 139(3), 469–489.

    Article  Google Scholar 

  • Wang, P., Valerdi, R., Zhou, S., & Li, L. (2015). Introduction: advances in IoT research and applications. Information Systems Frontiers, 2(17), 239–241.

    Article  Google Scholar 

  • Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.

    Article  Google Scholar 

  • Wolfram, S. (1996). The mathematica book. Cambridge: Cambridge University Press.

  • Xu, B., Da Xu, L., Cai, H., Xie, C., Hu, J., & Bu, F. (2014). Ubiquitous data accessing method in IoT-based information system for emergency medical services. IEEE Transactions on Industrial Informatics, 10(2), 1578–1586.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore T. March.

Appendices

Appendix A. Optimal preventive maintenance schedule when the state shift is observable

Panagiotidou and Tagaras (2007) developed a model to optimize maintenance for equipment with two quality states and general failure time distributions assuming the transition from the in-control state to the out-of-control state is observable. The model developed by Panagiotidou and Tagaras (2007) is a renewal reward process model with two decision variables:

  • tm0 = the scheduled time for preventive maintenance if the equipment remains in the in-control state during that time; and

  • tm1 = the rescheduled time for preventive maintenance if the equipment transitions to the out-of-control state prior to tm0.

1.1 Preventive Maintenance Policy

  • If the shift occurs prior to tm1, then preventive maintenance is performed at time tm1.

  • If the shift occurs after tm1 but before tm0 then preventive maintenance is performed at the time of the shift.

  • If no shift occurs prior to tm0 then preventive maintenance is performed at tm0.

Of course, if a failure occurs prior to tm0 (or tm1) then corrective maintenance is performed.

Specifically the model determines the values for tm0 and tm1 that maximize the expected profit per cycle as:

$$ {\operatorname{Max}\ \mathrm{EPT}}_{\mathrm{IoT}}\left({\mathrm{t}}_{\mathrm{m}0},{\mathrm{t}}_{\mathrm{m}1}\right)=\mathrm{EP}\left({\mathrm{t}}_{\mathrm{m}0},{\mathrm{t}}_{\mathrm{m}1}\right)/\mathrm{ET}\left({\mathrm{t}}_{\mathrm{m}0},{\mathrm{t}}_{\mathrm{m}1}\right) $$

where EP(tm0, tm1) is the expected profit per cycle and ET(tm0, tm1) is the expected cycle time, each given by the following expressions.

$$ \begin{array}{l}\mathrm{EP}\left({\mathrm{t}}_{\mathrm{m}0},{\ \mathrm{t}}_{\mathrm{m}1}\right)={R}_0\kern0.5em {\int}_0^{t_{m0}}\kern0.5em \overline{F}(t)\ {\overline{\Phi}}_0(t)\ dt+{R}_1\kern0.75em {\int}_0^{t_{m1}} f(t){\overline{\Phi}}_0(t)\kern1.25em {\int}_t^{t_{m1}}{\overline{\Phi}}_1\left({t}^{\prime}\right)\kern0.5em /\kern0.75em {\overline{\Phi}}_1(t)\ {dt}^{\prime }\ dt\ \hfill \\ {}\kern7.75em - W-\left({W}_P- W\right)\left[{\overline{\Phi}}_0\left({t}_{m0}\right)\ \overline{F}\left({t}_{m0}\right)+{\int}_0^{t_{m1}} f(t)\ {\overline{\Phi}}_0(t)\ {\overline{\Phi}}_1\left({t}_{m1}\right)\kern0.5em /\kern0.5em {\overline{\Phi}}_1(t)\ dt+{\int}_{t_{m1}}^{t_{m0}} f(t)\ {\overline{\Phi}}_0(t)\ dt\kern0.75em \right]\hfill \end{array} $$
$$ \begin{array}{l}\mathrm{ET}\left({\mathrm{t}}_{\mathrm{m}0},{\ \mathrm{t}}_{\mathrm{m}1}\right)={\int}_0^{t_{m0}}\kern0.5em \overline{F}(t)\ {\overline{\Phi}}_0(t)\ dt+\kern0.5em {\int}_0^{t_{m1}} f(t){\overline{\Phi}}_0(t)\kern1.25em {\int}_t^{t_{m1}}{\overline{\Phi}}_1\left({t}^{\prime}\right)\kern0.5em /\kern0.75em {\overline{\Phi}}_1(t)\ {dt}^{\prime }\ dt\ \hfill \\ {}\kern7.75em + Z+\left({Z}_P-\mathrm{Z}\right)\left[{\overline{\Phi}}_0\left({t}_{m0}\right)\ \overline{F}\left({t}_{m0}\right)+{\int}_0^{t_{m1}} f(t)\ {\overline{\Phi}}_0(t)\ {\overline{\Phi}}_1\left({t}_{m1}\right)\kern0.5em /\kern0.5em {\overline{\Phi}}_1(t)\ dt+{\int}_{t_{m1}}^{t_{m0}} f(t)\ {\overline{\Phi}}_0(t)\ dt\kern0.75em \right]\hfill \end{array} $$

Where

f(t) :

density function of the time to quality shift

F(t):

cumulative distribution function of the time to quality shift

\( \overline{\mathrm{F}}\left(\mathrm{t}\right) \) :

1 – F(t)

φ i (t) :

density function of the time of failure (equipment age) if the process is in state i (i = 0, 1) at t = 0; note that the density function of the time to failure if a quality shift occurs at time ts is φ1(t)/Φ1(ts) for t > ts.

Φ i (t) :

cumulative distribution function of the time of failure in state i

\( \overline{\Phi}(t) \) :

1 – Φi(t)

h i (t) :

φi(t) / Φi(t) (failure rate in state i)

t :

equipment age; t = 0 at the beginning of each cycle

t m0 :

scheduled preventive maintenance time in the in-control state

t m1 (t) :

rescheduled preventive maintenance time if a shift to the out-of-control state occurs at t < tm0

Z :

expected time to repair the equipment after failure

Z P :

expected time to perform preventive maintenance

R i :

expected net revenue per unit time of operation in state i (i = 0,1)

W :

cost of repair after failure

W P :

cost of preventive maintenance

Appendix B. Optimal preventive maintenance schedule when the state shift is not observable

If the transition from the in-control state to the out-of-control state is not observable, then there is only one decision variable, tm0, which must be determined considering that the unobservable transition can occur prior to that time (and a failure may occur prior to that time).

Modifying the model developed by Panagiotidou and Tagaras (2007), if the transition is not observable then in all expressions, replace tm1 with tm. The objective function is then given as:

$$ {\operatorname{Max}\ \mathrm{EPT}}_{\mathrm{N}\mathrm{on}\ \mathrm{IoT}}\left({\mathrm{t}}_{\mathrm{m}}\right)={\mathrm{EP}}_{\mathrm{N}}\left({\mathrm{t}}_{\mathrm{m}}\right)/{\mathrm{ET}}_{\mathrm{N}}\left({\mathrm{t}}_{\mathrm{m}}\right) $$

where EPN(tm) is the expected profit per cycle and ETN(tm) is the expected cycle time, each given by the following expressions.

$$ \begin{array}{l}{\mathrm{EP}}_{\mathrm{N}}\left({\mathrm{t}}_{\mathrm{m}}\right)\kern1.5em ={R}_0\ {\int}_0^{t m}\kern1em \overline{F}(t)\ {\overline{\Phi}}_0(t)\ dt+\kern0.5em {R}_1\ {\int}_0^{t m} f(t)\ {\overline{\Phi}}_0(t)\kern0.75em {\int}_t^{t m}\ {\overline{\Phi}}_1\left({t}^{\prime}\right)\kern0.5em /\kern0.5em {\overline{\Phi}}_1(t)\ {dt}^{\prime }\ dt\ \hfill \\ {}\kern5.25em - W-\left({W}_P- W\right)\left[{\overline{\Phi}}_0\left({t}_m\right)\ \overline{F}\left({t}_m\right)+{\int}_0^{t m} f(t)\ {\overline{\Phi}}_0(t)\ {\overline{\Phi}}_1\left({t}_m\right)\kern0.5em /\kern0.5em {\overline{\Phi}}_1(t)\ dt\right]\hfill \end{array} $$
$$ \begin{array}{l}{\mathrm{ET}}_{\mathrm{N}}\left({\mathrm{t}}_{\mathrm{m}}\right)\kern1.5em ={\int}_0^{t m}\kern1em \overline{F}(t)\ {\overline{\Phi}}_0(t)\ dt+\kern0.5em {\int}_0^{t m} f(t)\ {\overline{\Phi}}_0(t)\kern0.75em {\int}_t^{t m}\ {\overline{\Phi}}_1\left({t}^{\prime}\right)\kern0.5em /\kern0.5em {\overline{\Phi}}_1(t)\ {dt}^{\prime }\ dt\ \hfill \\ {}\kern5.25em + Z+\left({Z}_P- Z\right)\left[{\overline{\Phi}}_0\left({t}_m\right)\ \overline{F}\left({t}_m\right)+{\int}_0^{t m} f(t)\ {\overline{\Phi}}_0(t)\ {\overline{\Phi}}_1\left({t}_m\right)\kern0.5em /\kern0.5em {\overline{\Phi}}_1(t)\ dt\right]\hfill \end{array} $$

All variables and functions are as defined above.

Appendix C. Example failure and shift distributions

Following Panagiotidou and Tagaras (2007) we consider a numerical example where the failure mechanism in both in-control and out-of-control states is expressed by Weibull distributions of the failure age. The Weibull density function associated with state t (0 = in-control and 1 = out-of-control) is:

$$ {\varphi}_i(t)={\lambda}_i\;{c}_i\;{t}^{c i-1}\;{e}^{-{\lambda}_i\;{t}^{c i}}\kern2.75em t>0,{c}_i>0,{\lambda}_i>0, i=0,1 $$

where λi is the scale parameter and ci is the shape parameter of the distribution. In order to ensure that the failure rate when operating in the out-of-control state with equipment age t is larger than or equal to the failure rate in the in-control state with the same equipment age, it is necessary to have c0 = c1 and λ0 ≤ λ1. For the graphical illustrations in Appendix Figs. 7 and 8 below c0 = c1 = 2, λ0 = 0.005 and λ1 = 0.01 (mean times: μ0 = 12.53, μ1 = 8.86; standard deviations: σ0 = 6.55, σ1 = 4.63).

Fig. 7
figure 7

Failure distribution for initial (in-control) state (φ1(t); c0 = 2, λ0 = .005)

Fig. 8
figure 8

Failure distribution for deteriorated (out-of-control) state (φ2(t); c1 = 2, λ1 = .01)

The quality shift mechanism of the process is expressed by a Gamma density function.

$$ f(t)={\lambda}_c/\Gamma (c)\ {t}^{c-1}{e}^{-\lambda t} $$

For the graphical illustration in Fig. 9 below c = 2 and λ = 0.15 (mean time: μ = 13.33; standard deviation: σ = 9.43).

Fig. 9
figure 9

Time to shift distribution (ƒ(t); c = 2, λ = .15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

March, S.T., Scudder, G.D. Predictive maintenance: strategic use of IT in manufacturing organizations. Inf Syst Front 21, 327–341 (2019). https://doi.org/10.1007/s10796-017-9749-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-017-9749-z

Keywords

Navigation