Skip to main content

Advertisement

Log in

Organizing Self-Organizing Systems: A Terminology, Taxonomy, and Reference Model for Entities in Cyber-Physical Production Systems

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Ongoing digitalization accelerates the transformation and integration of physical production and traditional computing systems into smart objects and their interconnectivity, forming the Internet of Things. In manufacturing, the cross-linking of embedded systems creates adaptive and self-organizing Cyber-Physical Production Systems (CPPSs). Owing to ever-increasing cross-linking, rapid technological advances, and multifunctionality, the complexity and structural opacity of CPPSs are rapidly increasing. The development of urgently needed modeling approaches for managing such complexity and structural opacity, however, is impeded by a lack of common understanding of CPPSs. Therefore, in this paper, we contribute to a common understanding of CPPSs by defining and classifying CPPS entities and illustrating their relations. More precisely, we present a terminology, a taxonomy, and a reference model for CPPS entities, created and evaluated using an iterative development process. Thereby, we lay the foundation for future CPPS modeling approaches that make CPPS complexity and structural opacity more manageable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agostinho, C., Ferreira, J., Ghimire, S., Zacharewicz, G., Pirayesh, A., Doumeingts, G. (2018). A Comprehensive Architecture to Integrate Modeling and Simulation Solutions in CPPS. In Enterprise Interoperability: Smart Services and Business Impact of Enterprise Interoperability. John Wiley & Sons.

  • Ahmed, S. H., Kim, G., Kim, D. (2013). Cyber Physical System: Architecture, Applications and Research Challenges. In Proceedings of the IFIP 2013 Wireless Days. Valencia, Spain.

  • Akanmu, A. A., Anumba, C. J., & Messner, J. I. (2012). An RTLS-based approach to cyber-physical systems integration in design and construction. International Journal of Distributed Sensor Networks, 2012, 1–11.

    Google Scholar 

  • Akyildiz, I. F., & Kasimoglu, I. H. (2004). Wireless sensor and actor networks: Research challenges. Ad Hoc Networks, 2(4), 351–367.

    Google Scholar 

  • Almada-Lobo, F. (2016). The industry 4.0 revolution and the future of manufacturing execution systems (MES). Journal of Innovation Management, 3(4), 16–21.

    Google Scholar 

  • APPsist (2018). APPsist. Resource document. Festo Lernzentrum Saar GmbH. www.appsist.de. Accessed 26 May 2019.

  • Bagheri, E., & Ghorbani, A. A. (2010). UML-CI: A reference model for profiling critical infrastructure systems. Information Systems Frontiers, 12(2), 115–139.

    Google Scholar 

  • Bailey, K. D. (1994). Typologies and Taxonomies: an Introduction to Classification Techniques. Sage.

  • Barot, V., Henshaw, M., Siemieniuch, C., Sinclair, M., Lim, S. L., Henson, S., et al. (2013). Trans-atlantic Reserach and Education Agenda in Systems of Systems - State of the Art Report for the Domain System of Systems.

  • Bauernhansl, T. (2015). Automotive Industry without Conveyer Belt and Cycle – Research Campus ARENA2036. In Bargende M., Reuss HC., Wiedemann J. (Eds.) 15. Internationales Stuttgarter Sym-posium. Springer, Wiesbaden.

  • Bednar, P. M., & Welch, C. (2019). Socio-Technical Perspectives on Smart Working: Creating Mean-ingful and Sustainable Systems. Information Systems Frontiers, 1–18.

  • Berger, C., Hees, A., Braunreuther, S., & Reinhart, G. (2016). Characterization of cyber-physical sensor systems. Procedia CIRP, 41, 638–643.

    Google Scholar 

  • Bocciarelli, P., D'Ambrogio, A., Giglio, A., Paglia, E. (2017). A BPMN Extension for Modeling Cyber-Physical-Production-Systems in the Context of Industry 4.0. In 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC) (pp. 599–604). Calabria, Italy.

  • Bornschlegl, M. X., Berwind, K., Kaufmann, M., Hemmje, M. L. (2016). Towards a Reference Model for Advanced Visual Interfaces Supporting Big Data Analysis. In ICOMP 2016: The 17th International Conference on Internet Computing and Internet of Things (pp. 78–81). Las Vegas, Nevada.

  • Branke, J., Mnif, M., Muller-Schloer, C., Prothmann, H. (2006). Organic Computing - Addressing Complexity by Controlled Self-organization. In: Margaria, T., Philippou, A., Steffen, B. (Eds.) Proceedings of the 2nd International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (pp. 200–206). Paphos, Cyprus.

  • Broy, M., Cengarle, M. V., & Geisberger, E. (2012). Cyber-physical systems: Imminent challenges. In R. Calinescu & D. Garlan (Eds.), Proceedings of the 17th Monterey conference on large-scale complex IT systems: Development, operation and management (pp. 1–28). Berlin Heidelberg: Springer.

    Google Scholar 

  • Cambridge Dictionary (2018). Cambridge Dictionaries Online. https://dictionary.cambridge.org/dictionary/english/taxonomy. Accessed 22 May 2019.

  • Castro-Leon, E., & Harmon, R. (2016). Cloud Computing as a Service. In Cloud as a Service (pp. 3–30). Springer.

  • Cena, F., Console, L., Matassa, A., & Torre, I. (2019). Multi-dimensional intelligence in smart physical objects. Information Systems Frontiers, 21(2), 383–404.

    Google Scholar 

  • Chen, H. (2017a). Theoretical foundations for cyber-physical systems: A literature review. Journal of Industrial Integration and Management, 2(3), 1750013.

    Google Scholar 

  • Chen, H. (2017b). Applications of cyber-physical system: A literature review. Journal of Industrial Integration and Management, 2(3), 1750012.

    Google Scholar 

  • Chen, M., Wan, J., & Li, F. (2012). Machine-to-machine communications: Architectures, standards and applications. KSII Transactions on Internet and Information Systems, 6(2), 480–497.

    Google Scholar 

  • CyberPhysicalSystems (2018). Concept Map. www.cyberphysicalsystems.org. Accessed 13 October 2018.

  • Darwish, A., & Hassanien, A. E. (2017). Cyber Physical Systems Design, Methodology, and Integra-tion: the Current Status and Future Outlook. Journal of Ambient Intelligence and Humanized Computing, 1–16.

  • Ding, K., Chan, F., Zhang, X., Zhou, G., & Zhang, F. (2019). Defining a digital twin-based cyber-physical production system for autonomous manufacturing in smart shop floors. International Journal of Production Research, 2019, 1–20.

    Google Scholar 

  • Dumas, M., Van der Aalst, W. M., Ter Hofstede, A. H. (2005). Process-aware Information Systems: Bridging People and Software through Process Technology. John Wiley & Sons.

  • Dworschak, B., & Zaiser, H. (2014). Competences for cyber-physical Systems in Manufacturing – First findings and scenarios. Procedia CIRP, 25, 345–350.

    Google Scholar 

  • Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., & Bouras, A. (2014). A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3), 267–279.

    Google Scholar 

  • Fescioglu-Unver, N., Choi, S. H., Sheen, D., & Kumara, S. (2015). RFID in production and service systems: Technology, applications and issues. Information Systems Frontiers, 17(6), 1369–1138.

    Google Scholar 

  • Foehr, M., Vollmar, J., Calà, A., Leitão, P., Karnouskos, S., Colombo, A. W. (2017). Engineering of Next Generation Cyber-physical Automation System Architectures. Multi-Disciplinary Engineering for Cyber-physical Production Systems (pp. 185–206). Springer, Cham.

  • Fortino, G., Russo, W., Rovella, A., Savaglio, C. (2014). On the Classification of Cyberphysical Smart Objects in Internet of Things. In Proceedings of the 5th International Workshop on Networks of Cooperating Objects for Smart Cities (pp. 76–84). Berlin, Germany.

  • Frank, U. (1999). Conceptual Modelling as the Core of the Information Systems Discipline - Perspectives and Epistemological Challenges. In Proceedings of the Proceedings of the 5th America's Conference on Information Systems (pp. 695–697). Milwaukee, Wisconsin.

  • Gaham, M., Bouzouia, B., Achour, N. (2015). Human-in-the-Loop Cyber-physical Production Systems Control (HiLCP2sC): a Multi-objective Interactive Framework Proposal. In Service Orientation in Holonic and Multi-agent Manufacturing (pp. 315–325). Springer International Publishing.

  • Gill, A. Q., Henderson-Sellers, B., & Niazi, M. (2018). Scaling for agility: A reference model for hybrid traditional-agile software development methodologies. Information Systems Frontiers, 20(2), 315–341.

    Google Scholar 

  • Gräßler, I., Pöhler, A., Pottebaum, J. (2016). Creation of a Learning Factory for Cyber Physical Production Systems. In Proceedings of the 6th conference on learning factories, Procedia CIRP (pp. 107–112). Gjovik, Norway.

  • Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 30(3), 611–642.

    Google Scholar 

  • Gronau, N., & Theuer, H. (2016). Determination of the optimal degree of autonomy in a cyber-physical production system. Procedia CIRP, 57, 110–115.

    Google Scholar 

  • Gronau, N., Grum, M., Bender, B. (2016). Determining the Optimal Level of Autonomy in Cyber-physical Production Systems. In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN) (pp. 1293–1299). Poitiers, France.

  • Gürdür, D., El-Khoury, J., Seceleanu, T., & Lednicki, L. (2016). Making interoperability visible: Data visualization of cyber-physical systems development tool chains. Journal of Industrial Information Integration, 4, 26–34.

    Google Scholar 

  • Hao, K., & Xie, F. (2009). Componentizing Hardware/Software Interface Design. In Proceedings of the Proceedings of the Conference on Design, Automation and Test in Europe (pp. 232–237). Dresden, Germany.

  • Haque, S. A., Aziz, S. M., & Rahman, M. (2014). Review of cyber-physical system in healthcare. International Journal of Distributed Sensor Networks, 2014, 1–20.

    Google Scholar 

  • Hawa, M., Al-Zubi, R., Darabkh, K. A., & Al-Sukkar, G. (2017). Adaptive approach to restraining content pollution in peer-to-peer networks. Information Systems Frontiers, 19(6), 1373–1390.

    Google Scholar 

  • Hellinger, A., & Seeger, H. (2011). Cyber-Physical Systems. Driving force for innovation in mobility, health, energy and production. Acatech Position Paper, National Academy of Science and Engineering, 2.

  • Hendrikx, F., Bubendorfer, K., & Chard, R. (2015). Reputation systems: A survey and taxonomy. Journal of Parallel and Distributed Computing, 75, 184–197.

    Google Scholar 

  • Hevner, A., & Chatterjee, S. (2010). Design Science Research in Information Systems. In Design Research in Information Systems (pp. 9–22). Springer US.

  • Holtewert, P., Wutzke, R., Seidelmann, J., & Bauernhansl, T. (2013). Virtual Fort Knox - federative, secure and cloud-based platform for manufacturing. Procedia CIRP, 7, 527–532.

    Google Scholar 

  • Horvath, I., & Gerritsen, B. H. (2012). Cyber-physical Systems: Concepts, Technologies and Implementation Principles. In Proceedings of TMCE (pp. 7–11).

  • Hubka, V., & Eder, W. E. (2012). Theory of Technical Systems: a Total Concept Theory for Engineering Design. Springer Science & Business Media.

  • Imkamp, D., Berthold, J., Heizmann, M., Kniel, K., Manske, E., Peterek, M., & Sommer, K. D. (2016). Challenges and trends in manufacturing measurement technology – The "Industrie 4.0" concept. Journal of Sensors and Sensor Systems, 5(2), 325.

    Google Scholar 

  • Jasperneite, J., & Niggemann, O. (2012). Systemkomplexität in der Automation Beherrschen. ATP Edition - Automatisierungstechnische Praxis, 54(9), 36–45.

    Google Scholar 

  • Kagermann, H., Wahlster, W., Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0 - Final Report of the Industry 4.0 Working Group.

  • Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., et al. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-green Technology, 3(1), 111–128.

    Google Scholar 

  • Karnouskos, S., & Colombo, A. W. (2011). Architecting the Next Generation of Service-based SCADA/DCS System of Systems. In Proceedings of the 37th Annual Conference on IEEE Industrial Electronics Society (pp. 359–364). Melbourne, Australia.

  • Karnouskos, S., Colombo, A. W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., et al. (2012). A SOA-based Architecture for Empowering Future Collaborative Cloud-based Industrial Automation. In Proceedings of the 38th Annual Conference on IEEE Industrial Electronics Society (pp. 5766–5772). Montreal, Canada.

  • Kassner, L. B., & Mitschang, B. (2015). MaXCept - Decision Support in Exception Handling through Unstructured Data Integration in the Production Context: an Integral Part of the Smart Factory. In 48th Hawaii International Conference on System Sciences (HICSS) (pp. 1007–1016). Hawaii, USA.

  • Kees, A., Oberländer, A., Röglinger, M., Rosemann, M. (2015). Understanding the Internet of Things: A Conseptualisation of Business-to-Thing (B2T) Interactions. In Proceedings of the 23th European Conference on Information Systems (pp. 1–15). Münster, Germany.

  • Keller, R., & König, C. (2014). A Reference Model to Support Risk Identification in Cloud Networks. In Proceedings of the Proceedings of the 35th International Conference on Information Systems (pp. 1–19). Auckland, New Zealand.

  • Kiewkanya, M., & Muenchaisri, P. (2011). Constructing modifiability metrics by considering different relationships. Chiang Mai Journal of Science, 28, 82–98.

    Google Scholar 

  • Krueger, R. A., & Casey, M. A. (2014). Focus groups: A practical guide for applied research. Sage publications.

  • Kuehnle, H. (2013). Progressing Virtualization of Production – Contributions from Distributed Manufacturing. In 17th Annual Cambridge International Manufacturing Symposium. Cambridge, England.

  • Kuehnle, H. (2014). Smart Units in Distributed Manufacturing (DM) – Key Properties and Upcoming Abilities. In 18th Annual Cambridge International Manufacturing Symposium. Cambridge, England.

  • Kumar, N., & Kumar, J. (2013). A Framework for Human Efficiency Measurement in Advanced Manu-facturing: HCI in INDUSTRY4.0. National Conference on Manufacturing: Vision for Future MVF2013. Guwahati, India.

  • Lee, E. A. (2008). Cyber Physical Systems: Design Challenges. In Proceedings of the 11th IEEE International Symposium on Object Oriented Real-time Distributed Computing (pp. 363–369). Orlando, Florida.

  • Lin, Y., Duan, X., Zhao, C., Xu, L. (2012). Systems Science: Methodological Approaches. CRC Press.

  • López, T. S., Ranasinghe, D., Patkai, B., & McFarlane, D. (2011). Taxonomy, technology and applications of smart objects. Information Systems Frontiers, 13(2), 281–300.

    Google Scholar 

  • Lucke, D., Constantinescu, C., & Westkämper, E. (2008). Smart factory - a step towards the next generation of manufacturing. In M. Mitsuishi, K. Ueda, & F. Kimura (Eds.), Manufacturing systems and Technologies for the new Frontier - the 41st CIRP conference on manufacturing systems (pp. 115–118). London: Springer.

    Google Scholar 

  • Ma, Z., Hudic, A., Shaaban, A., Plosz, S. (2017). Security Viewpoint in a Reference Architecture Model for Cyber-physical Production Systems. In 2nd IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 153–159). Paris, France.

  • Maldonado, J. A., Moner, D., Boscá, D., Fernández-Breis, J. T., Angulo, C., & Robles, M. (2009). A multi-reference model archetype editor based on formal semantics. International Journal of Medical Informatics, 78(8), 559–570.

    Google Scholar 

  • Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs, A. (2013). Disruptive Technologies: Advances that Will Transform Life, Business, and the Global Economy (McKinsey).

  • Martens, B., & Teuteberg, F. (2011). Risk and Compliance Management for Cloud Computing Services: Designing a Reference Model. In Proceedings of the Proceedings of the 17th Americas Conference on Information Systems (pp. 1–10). Detroit, Michigan.

  • Meisen, T., Rix, M., Hoffmann, M., Schilberg, D., Jeschke, S. (2016). A Framework for Semantic Integration and Analysis of Measurement Data in Modern Industrial Machinery. In Automation, Commu-nication and Cybernetics in Science and Engineering 2015/2016 (pp. 893–905). Springer, Cham.

  • Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing. U.S. National Institute of Standards and Technology (NIST) – Special Publication 800–145.

  • Mikusz, M. (2014). Towards an understanding of cyber-physical systems as industrial software-product-service systems. Procedia CIRP, 16, 385–389.

    Google Scholar 

  • Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D challenges. Procedia CIRP, 17, 9–13.

    Google Scholar 

  • Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn, W., & Ueda, K. (2016). Cyber-physical Systems in Manufacturing. CIRP Annals - Manufacturing Technology, 65(2), 621–641.

    Google Scholar 

  • Müller-Schloer, C. (2004). Organic Computing: On the Feasibility of Controlled Emergence. International Conference on Hardware/Software Codesign and System Synthesis (pp. 2–5). Stockholm, Sweden.

  • Musil, A., Musil, J., Weyns, D., Bures, T., Muccini, H., Sharaf, M. (2017). Patterns for Self-Adaptation in Cyber-Physical Systems. In Multi-Disciplinary Engineering for Cyber-Physical Production Systems (pp. 331–368). Springer, Cham.

  • National Instruments (2014). NI Trend Watch 2014 - Technology Trends that Accelerate your Productivity.

  • Nickerson, R., Muntermann, J., Varshney, U., Isaac, H. (2009). Taxonomy Development in Information Systems: Developing a Taxonomy of Mobile Applications. In Proceedings of the 17th European Conference on Information Systems (pp. 1–13). Verona, Italy.

  • Nickerson, R. C., Varshney, U., & Muntermann, J. (2013). A method for taxonomy development and its application in information systems. European Journal of Information Systems, 22(3), 336–359.

    Google Scholar 

  • Niggemann, O., & Lohweg, V. (2015). On the Diagnosis of Cyber-Physical Production Systems. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 4119–4126). Austin, Texas.

  • Nof, S. Y. (2009). Springer Handbook of Automation. Springer Science & Business Media.

  • Oberländer, A. M., Röglinger, M., Rosemann, M., Kees, A. (2017). Conceptualizing business-to-thing interactions – a Sociomaterial Perspective on the Internet of Things. European Journal of Information Systems, 1–17.

  • OMG (2011). UML 2.4.1 Superstructure. Resource document. http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/. Accessed 26 May 2019.

  • Otto, J., Vogel-Heuser, B., & Niggemann, O. (2018). Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production Systems in the Domain of discrete manufacturing. IEEE Transactions on Industrial Informatics, 14(1), 275–282.

    Google Scholar 

  • Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M. (2014). Towards Rapid Releases in Large-scale Xaas Development at Ericsson: a Case Study. In 2014 IEEE 9th International Conference on Global Software Engineering (ICGSE) (pp. 16–25). Shanghai, China.

  • Penas, O., Plateaux, R., Patalano, S., & Hammadi, M. (2017). Multi-scale approach from mechatronic to cyber-physical Systems for the Design of manufacturing systems. Computers in Industry, 86, 52–69.

    Google Scholar 

  • Pentek, T., Legner, C., Otto, B. (2017). Towards a Reference Model for Data Management in the Digi-tal Economy. In Designing the Digital Transformation: DESRIST 2017 Research in Progress Proceed-ings of the 12th International Conference on Design Science Research in Information Systems and Technology (pp. 51–66). Karlsruhe, Germany.

  • Pétrissans, A., Krawczyk, S., Cattaneo, G., Feeney, N., Veronesi, L., Meunier, C. (2012). Final Study Report: Design of Future Embedded Systems. Resource document. http://cordis.europa.eu/fp7/ict/embedded-systems-engineering/documents/idc-study-final-report.pdf. Accessed 13 October 2018.

  • Prat, N., Comyn-Wattiau, I., & Akoka, J. (2015). A taxonomy of evaluation methods for information systems artifacts. Journal of Management Information Systems, 32(3), 229–267.

    Google Scholar 

  • Prem, E., Irran, J., Sawyer, M., Parsons, M., Zsigri, C., Morgan, I., et al. (2014). Next generation computing roadmap. Publication Office.

  • Püschel, L., Röglinger, M., Schlott, H. (2016). “What’s in a Smart Thing? Development of a Multi-layer Taxonomy.” In Proceedings of the 37th International Conference on Information Systems. Dublin, Ireland.

  • Rowley, J. (2012). Conducting research interviews. Management Research Review, 35(3/4), 260–271.

    Google Scholar 

  • Sadeghi, A. R., Wachsmann, C., Waidner, M. (2015). Security and Privacy Challenges in Industrial Internet of Things. In Proceedings of the 52nd annual design automation conference (p. 54). San Francisco, USA.

  • Sanaei, Z., Abolfazli, S., Gani, A., & Buyya, R. (2014). Heterogeneity in Mobile cloud computing: Taxonomy and open challenges. Communications Surveys & Tutorials, 16(1), 369–392.

    Google Scholar 

  • Sánchez, B. B., Alcarria, R., Sańchez-De-Rivera, D., & Sańchez-Picot, Á. (2016). Enhancing process control in industry 4.0 scenarios using cyber-physical systems. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 7(4), 41–64.

    Google Scholar 

  • Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A., & Verl, A. (2015). Making existing production systems industry 4.0-ready. Production Engineering, 9(1), 143–148.

    Google Scholar 

  • Schmeck, H., Müller-Schloer, C., Çakar, E., Mnif, M., & Richter, U. (2010). Adaptivity and self-organization in organic computing systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(3), 10.

    Google Scholar 

  • Schuette, R., & Rotthowe, T. (1998). The guidelines of modeling - an approach to enhance the quality in information models. In T. W. Ling, S. Ram, & M. L. Lee (Eds.), Conceptual modeling - ER '98 - 17th international conference on conceptual modeling, Singapore (pp. 240–254). Berlin: Springer.

    Google Scholar 

  • Schuh, G., Potente, T., Varandani, R., Hausberg, C., Fränken, B. (2014). Collaboration Moves Productivity to the Next Level. In Proceedings of the 47th CIRP Conference on Manufacturing Systems (pp. 3–8). Windsor, Canada.

  • Shafiq, S. I., Sanin, C., Szczerbicki, E., & Toro, C. (2015). Virtual engineering object/virtual engineer-ing process: A specialized form of cyber physical system for Industrie 4.0. Procedia Computer Sci-ence, 60, 1146–1155.

    Google Scholar 

  • Strang, D., & Anderl, R. (2014). Assembly Process Driven Component Data Model in Cyber-physical Production Systems. In Proceedings of the World Congress on Engineering and Computer Science, 2014 (2), San Francisco, USA.

  • Strode, D. E. (2016). A dependency taxonomy for agile software development projects. Information Systems Frontiers, 18(1), 23–46.

    Google Scholar 

  • Strohmaier, M., & Rollett, H. (2005). Future Research Challenges in Business Agility - Time, Control and Information Systems. In Proceedings of the 2005 Seventh IEEE International Conference on E-Commerce Technology Workshops (pp. 109–115). Los Alamitos, California.

  • Sveda, M. (2014). Dependability in Cyber-physical Systems Network Applications. Latest Trends in Circuits, Systems, Signal Processing and Automatic Control (pp. 286–291). Salerno, Italy.

  • Thiede, S., Juraschek, M., & Herrmann, C. (2016). Implementing cyber-physical production Systems in Learning Factories. Procedia CIRP, 54, 7–12.

    Google Scholar 

  • Tomforde, S., Prothmann, H., Branke, J., Hähner, J., Mnif, M., Müller-Schloer, C., et al. (2011). Observation and Control of Organic Systems. In Organic Computing—A Paradigm Shift for Complex Systems (pp. 325–338). Springer.

  • Tomiyama, T., & Moyen, F. (2018). Resilient architecture for cyber-physical production systems. CIRP Annals – Manufacturing Technology, 67, 161–164.

    Google Scholar 

  • Tremblay, M. C., Hevner, A. R., & Berndt, D. J. (2010). Focus groups for artifact refinement and evaluation in design research. Communications of the Association for Information Systems, 26, 599–618.

    Google Scholar 

  • Ullrich, J., Voyiatzis, A. G., Weippl, E. R. (2016). Secure Cyber-physical Production Systems: Solid Steps towards Realization. In Proceedings of the 1st International Workshop on Cyber-Physical Production Systems (CPPS) (pp. 1–4). Vienna, Austria.

  • Vasseur, J., & Dunkels, A. (2010). Interconnecting smart objects with IP: The next internet. Elsevier S & T: Morgan Kaufmann.

    Google Scholar 

  • Vogel-Heuser, B., Diedrich, C., Pantförder, D., Göhner, P. (2014). Coupling Heterogeneous Production Systems by a Multi-agent Based Cyber-physical Production System. In 12th IEEE International Conference on Industrial Informatics (INDIN) (pp. 713–719). Porto Alegre, Brasilia.

  • Briel, F. von, & Schneider C. (2012). A Taxonomy of Web-based Inbound Open Innovation Initiatives. In Proceedings of the 18th Americas Conference on Information Systems (pp. 1–10). Seattle, USA.

  • Wang, Y., Vuran, M. C., & Goddard, S. (2008). Cyber-physical Systems in Industrial Process Control. ACM SIGBED Review, 5(1), 12–13.

    Google Scholar 

  • Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical sys-tems in manufacturing. Journal of Manufacturing Systems, 37, 517–527.

    Google Scholar 

  • Weyrich, M., Klein, M., Schmidt, J.-P., Jazdi, N., Bettenhausen, K. D., Buschmann, F., et al. (2017). Evaluation Model for Assessment of Cyber-Physical Production Systems. In Industrial Internet of Things (pp. 169–202). Springer, Cham.

  • Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things - a survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.

    Google Scholar 

  • Williams, K., Chatterjee, S., & Rossi, M. (2008). Design of Emerging Digital Services: A taxonomy. European Journal of Information Systems, 17(5), 505–517.

    Google Scholar 

  • Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-Integrated Manufacturing, 28(1), 75–86.

    Google Scholar 

  • Xu, L. D., & Duan, L. (2018). Big data for cyber physical Systems in Industry 4.0: A survey. Enterprise Information Systems, 13(2), 148–169.

    Google Scholar 

  • Xu, L. D., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 4(10), 2233–2243.

    Google Scholar 

  • Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: State of the art and future trends. International Journal of Production Research, 56(8), 2941–2962.

    Google Scholar 

  • Yang, T., Huang, Z., Pen, H., Zhang, Y. (2017). Optimal Planning of Communication System of CPS for Distribution Network. Journal of Sensors, 2017.

  • Yao, X., Zhou, J., Lin, Y., Li, Y., Yu, H., Liu, Y. (2017). Smart Manufacturing Based on Cyber-physical Systems and beyond. Journal of Intelligent Manufacturing, 1–13.

  • Yoon, J., Shin, S., & Suh, S. (2012). A conceptual framework for the ubiquitous factory. International Journal of Production Research, 50(8), 2174–2189.

    Google Scholar 

  • Zamfirescu, C., Pirvu, B., Gorecky, D., & Chakravarthy, H. (2014). Human-centred assembly: A case study for an anthropocentric cyber-physical system. Procedia Technology, 15, 90–98.

    Google Scholar 

  • Zhang, Y., Zhu, Z., & Lv, J. (2017). CPS-based smart control model for Shopfloor material handling. IEEE Transactions on Industrial Informatics, 13(5), 2350–2359.

    Google Scholar 

  • Zhang, Y., Guo, Z., Lv, J., & Liu, Y. (2018). A framework for smart production-logistics systems based on CPS and industrial IoT. IEEE Transactions on Industrial Informatics, 14(9), 4019–4032.

    Google Scholar 

  • Zhu, Q., Rieger, C., Başar, T. (2011). A Hierarchical Security Architecture for Cyber-physical Systems. In 4th International Symposium on Resilient Control Systems (ISRCS) (pp. 15–20). Boise, USA.

  • Zuehlke, D. (2010). SmartFactory - towards a factory-of-things. Annual Reviews in Control, 34, 129–138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Berger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 2 Details on our evaluation iterations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, S., Häckel, B. & Häfner, L. Organizing Self-Organizing Systems: A Terminology, Taxonomy, and Reference Model for Entities in Cyber-Physical Production Systems. Inf Syst Front 23, 391–414 (2021). https://doi.org/10.1007/s10796-019-09952-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-019-09952-8

Keywords

Navigation