Abstract
In the context of disaster management, the intervention of Autonomous Systems brings many benefits to human rescuers. Autonomous Systems can quickly reach regions that may be inaccessible for humans. In addition, they can perform a rapid mapping of the impacted area and therefore enhancing the human knowledge. However, it is necessary to choose the best Autonomous Systems according to (i) mission environment and (ii) mission objectives. In this article, we describe our work on ArcTurius rover, a wheeled Autonomous System in support to disaster management. We validated its design through simulation and formal verification. A first simulation step occurs during the system definition. This allows to formally verify the design choices. A second type of simulation is performed to check the adequacy of the rover with respect to a specific mission. Thus, an Autonomous System can be adapted prior to a real mission to enhance its level of performance.
















Similar content being viewed by others
References
Ackerman, E. (2013). Drone adventures uses UAVs to help make the world a better place. IEEE Spectrum.
Apvrille, L. (2008). TTool for DIPLODOCUS: An environment for design space exploration. https://doi.org/10.1145/1416729.1416764.
Apvrille, L., Roudier, Y., & Tanzi, T. J. (2015). Autonomous drones for disasters management: Safety and security verifications (pp. 1–2). Las Palmas: 20151st URSI Atlantic Radio Science Conference (URSI AT-RASC).
Apvrille, L., Tanzi, T. J., Roudier, Y., Dugelay, J.-L. (2017). Drone humanitaire : état de l'art et réflexions, Revue Française de Photogrammétrie et de Télédétection, pp. 63–71
Burguillos, C., & Deng, H. (2018). Emergency Communications network for disasters management in venezuela. ISPRS - international archives of the photogrammetry. Remote Sensing and Spatial Information Sciences, XLII-3, 93–101. https://doi.org/10.5194/isprs-archives-XLII-3-93-2018.
Camara, D. (2014). Cavalry to the Rescue: Drones Fleet to Help Rescuers Operations over Disasters Scenarios. Antibes: IEEE Conference on Antenna Measurements & Applications (CAMA).
Chandra, M., & Tanzi, T. J. (2017). Drone-Borne GPR Design: Propagation Issues. Journées scientifiques de l'URSI-France (JS'17).
Dias, J. M. S., Nande, P., Barata, N., & Correia, A. (2004). OGRE - open gestures recognition engine, Proceedings (pp. 33–40). Curitiba: 17th Brazilian symposium on computer graphics and image processing.
Gademer, A., Petitpas, B., Beaudoin, L., Tanzi, T. J., Riera, B., & Rudant, J. P. (2010). Using centimetric visible imagery obtained from an UAV quadrotor for classification of ERS images. Bergen: European Space Agency ESA Living Planet Symposium.
Genius, D., Li, L., Apvrille, L., & Tanzi, T. (2018). Multi-level Latency Evaluation with an MDE Approach. Funchal: 6th International Conference on Model-Driven Rngineering and Software Development (MODELSWARD 2018). https://doi.org/10.5220/0006535902950302 ⟨hal-01670546⟩.
Guha-Sapir, D., Hoyois, P., & Below, R. (2013). Annual disaster statistical review 2012: The number and trends. Brussels: CRED.
Hokuyo UTM-30LX Scanning Laser Rangefinder (2020), https://www.hokuyo-aut.jp/search/single.php?serial=169
Huang, J., & Lien, Y. (2012). Challenges of emergency communication network for disaster response (pp. 528–532). Singapore: 2012 IEEE International Conference on Communication Systems (ICCS).
ITU-R SM. (1754) (n.d.). Measurement techniques of ultra-wideband transmissions, rec. ITU-R SM.1755 characteristics, rec. ITU-R SM.1756 Framework & rec. ITU-R SM.1757 impact of ultra-wideband technology.
Kam, H. R., Lee, S.-H., Park, T., & Kim, C.-H. (2015). RViz: a toolkit for real domain data visualization. Telecommunication Systems, 60, 1–9. https://doi.org/10.1007/s11235-015-0034-5.
Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-robot simulator (Vol. 3, pp. 2149–2154). Sendai: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).
Lee, S., Har, D., & Kum, D. (2016). Drone-Assisted Disaster Management: Finding Victims via Infrared Camera and Lidar Sensor Fusion (pp. 84–89). Nadi: 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). https://doi.org/10.1109/APWC-on-CSE.2016.025.
Lefeuvre, F., & Tanzi, T. (2013). International Union of Radio Science, International Council for Science (ICSU), joint Board of Geospatial Information Societies (jBGIS),” in United Nations office for outer space affairs (OOSA).
Li, C., Chen, F., Qi, F., Liu, M., Li, Z., Liang, F., Jing, X., Lu, G., & Wang, J. (2016). Searching for Survivors through Random Human-Body Movement Outdoors by Continuous-Wave Radar Array. PloS one, 11, e0152201. https://doi.org/10.1371/journal.pone.0152201.
Ludovic, A., Tanzi, T. J., Roudier, Y., Dugelay, J.-L. (2017). Drone humanitaire : état de l'art et réflexions, Revue Française de Photogrammétrie et de Télédétection, pp. 63–71, N 213–04-26. 2017. ISSN 1768-9791.
Nguyen, T. P. V., et al. (2019). Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors (Basel, Switzerland), 19(13), 2879–2828. https://doi.org/10.3390/s19132879
ODE – Open Dynamics Engine (n.d.), https://www.ode.org/
OpenDRI_a (n.d.), Open Data for Resilience Initiative, OpenDRI, https://opendri.org/
OpenDRI_b (2019), MACHINE LEARNING for DISASTER RISK MANAGEMENT 2019 https://opendri.org/wp-content/uploads/2019/04/190412_WorldBank_DisasterRiskManagement_Ebook_final.pdf
Pedroza, G., Apvrille, L., & Knorreck, D. (2011). AVATAR: A SysML Environment for the Formal Verification of Safety and Security Properties (pp. 1–10). Paris: 2011 11th annual international conference on new Technologies of Distributed Systems.
Persico R., & Wiley J. (2014). Introduction to ground penetrating radar: Inverse scattering and data processing. ISBN: 9781118305003.
Roudier, Y., & Tanzi, T. J. (2017). A State of the Art of Drone (In)Security. In Journées scientifiques de l'URSI-France (JS'17).
Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.. (2009). ROS: An open-source robot operating system. ICRA Workshop on Open Source Software. 3.
Schweppe, H., Roudier, Y., Weyl, B., Apvrille, L., & Scheuer-Mann, D. (2011). C2X Communication: Securing the Last Meter. San Francisco: The 4th IEEE International Symposium on Wireless Vehicular Communications: WIVEC2011.
Sebastien, O., Harivelo, F., & Sebastien, D. (2014). Using general public connected devices for disasters victims location. Beijing: 31th URSI GASS.
Servigne, S., Gripay, Y., OzgunPinarer, J. S., Ozgovde, A., & Jay, J. (2016). Heterogeneous Sensor Data Exploration and Sustainable Declarative Monitoring Architecture: Application to Smart Building. Split (Croatie): First International Conference on Smart Data and Smart Cities, 30th UDMS, 9 septembre 2016; 97–104. https://doi.org/10.5194/isprs-annals-IV-4-W1-97-2016
Tanzi, T., & Isnard, J. (2015). Introduction to public safety networks Chapter of book, in public safety book volume 1: Overview and Challenges. Published by Wiley-ISTE. 2015.
Tanzi, T., & Lefeuvre, F. (2010). Radio sciences and disaster management. C.R. Physique, 11, 114–224.
Tanzi, T., & Lefeuvre F. (2011). The Contribution of Radio Sciences to Disaster Management. In International Symposium on Geo-information for disaster management (Gi4DM 2011), Antalya, Turkey.
Tanzi, T., & Perrot, P. (2009). Télécoms pour l’ingénierie du risque (in French), editions hermès ed. Paris: Collection Technique et Scientifique des Télécoms.
Tanzi, T. J., Roudier, Y., & Apvrille, L. (2015). Towards a new architecture for autonomous data collection. La Grande Motte (Montpellier): ISPRS Geospatial Week 2015: Workshop on civil Unmanned Aerial Vehicles for geospatial data acquisition.
Tanzi, T. M. C., Isnard, J., Camara, D., Sebastien, O., & Harivelo, F. (2016). Towards rone Borne Disaster Management. Future Application Scenarios, III-8, 181–189. https://doi.org/10.5194/isprs-annals-III-8-181.
TTool (n.d.), https://ttool.telecom-paris.fr/index.html
Wilkinson, P., & Cole, D. (2010). The role of the radio sciences in the disaster management. Radio Science Bulletin, 3358, 45–51.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tanzi, T., Bertolino, M. Autonomous Systems for Rescue Missions: Design, Architecture and Configuration Validation. Inf Syst Front 23, 1189–1202 (2021). https://doi.org/10.1007/s10796-020-10085-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10796-020-10085-6