Skip to main content

Advertisement

Design of an Intelligent Patient Decision aid Based on Individual Decision-Making Styles and Information Need Preferences

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

An emerging trend in healthcare delivery is that of patient-centered medicine which includes empowering patients through shared decision-making in their medical care. The use of information technology is a key enabler for empowering patients and supporting patient-centered care. The patient decision aid is one tool for getting patients more involved in their care. However, existing patient decision aids make generalized assumptions about their users and fail to accommodate the variability of individual information needs and decision-making preferences known in the literature. In this paper, we investigate patient attributes that influence patient decision-making preferences and present a framework for the design of individualized patient decision aids. The proposed framework is instantiated in the context of end stage renal disease and was tested to evaluate its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ameling, J. M., Auguste, P., Ephraim, P. L., Lewis-Boyer, L., DePasquale, N., Greer, R. C., Crews, D. C., Powe, N. R., Rabb, H., & Boulware, L. E. (2012). Development of a decision aid to inform patients’ and families’ renal replacement therapy selection decisions. BMC Medical Informatics and Decision Making, 12(1), 140.

    Article  Google Scholar 

  • Ankem, K. (2006). Factors influencing information needs among cancer patients: A meta-analysis. Library & Information Science Research, 28(1), 7–23.

    Article  Google Scholar 

  • Benbassat, J., Pilpel, D., & Tidhar, M. (1998). Patients’ preferences for participation in clinical decision. Behavioral Medicine, 24(2), 81–88.

    Article  Google Scholar 

  • Boyd, C. M., Darer, J., Boult, C., Fried, L. P., Boult, L., & Wu, A. W. (2005). Clinical practice guidelines and quality of care for older patients with multiple comorbid diseases: Implications for pay for performance. JAMA, 294(6), 716–724.

    Article  Google Scholar 

  • Buehler, R., & McFarland, C. (2001). Intensity Bias in affective forecasting: The role of temporal focus. Personality and Social Psychology Bulletin, 27(11), 1480–1493.

    Article  Google Scholar 

  • Carrigan, N., Gardner, P. H., Conner, M., & Maule, J. (2004). The impact of structuring information in a patient decision aid. Psychology & Health, 19(4), 457–477.

    Article  Google Scholar 

  • Case, D. O. (2002). Looking for information : A survey of research on information seeking, needs, and behavior. San Diego: Academic Press.

    Google Scholar 

  • Cassileth, B. R., Zupkis, R. V., Sutton-Smith, K., & March, V. (1980). Information and participation preferences among Cancer patients. Annals of Internal Medicine, 92(6), 832–836.

    Article  Google Scholar 

  • Christensen, A. J., & Ehlers, S. L. (2002). Psychological factors in end-stage renal disease: An emerging context for behavioral medicine research. Journal of Consulting and Clinical Psychology, 70(3), 712–724.

    Article  Google Scholar 

  • Dalal, R. S., & Bonaccio, S. (2010). What types of advice do decision-makers prefer? Organizational Behavior and Human Decision Processes, 112(1), 11–23.

    Article  Google Scholar 

  • Deber, R. B., Kraetschmer, N., & Irvine, J. (1996). What role do patients wish to play in treatment decision making? Archives of Internal Medicine, 156(13), 1414–1420.

    Article  Google Scholar 

  • Degner, L. F., Sloan, J. A., & Venkatesh, P. (1997). The control preferences scale. The Canadian Journal of Nursing Research, 29(3), 21–43.

    Google Scholar 

  • Dervin, B., & Nilan, M. (1986). Information needs and uses. Annual Review of Information Science and Technology, 21, 3–33.

    Google Scholar 

  • Dolan, J. G., & Frisina, S. (2002). Randomized controlled trial of a patient decision aid for colorectal cancer screening. Medical Decision Making, 22(2), 125–139.

    Article  Google Scholar 

  • Elwyn, G., Edwards, A., & Kinnersley, P. (1999). Shared decision-making in primary care: The neglected second half of the consultation. British Journal of General Practice, 49(443), 477–482.

    Google Scholar 

  • Elwyn, G., Kreuwel, I., Durand, M. A., Sivell, S., Joseph-Williams, N., Evans, R., & Edwards, A. (2011). How to develop web-based decision support interventions for patients: A process map. Patient Education and Counseling, 82(2), 260–265.

    Article  Google Scholar 

  • Elwyn, G., O’Connor, A., Stacey, D., Volk, R., Edwards, A., & Coulter, A. (2006). Developing a quality criteria framework for patient decision aids: Online international Delphi consensus process. British Medical Journal, 333(7565), 417–419.

    Article  Google Scholar 

  • Emanuel, E. J., & Emanuel, L. L. (1992). Four models of the physician-patient relationship. Journal of the American Medical Association, 267(16), 22–29.

    Google Scholar 

  • Engin, A., & Vetschera, R. (2017). Information representation in decision making: The impact of cognitive style and depletion effects. Decision Support Systems, 103, 94–103. https://doi.org/10.1016/J.DSS.2017.09.007.

    Article  Google Scholar 

  • Evans, R., Elwyn, G., Edwards, A., Watson, E., Austoker, J., & Grol, R. (2007). Toward a model for field-testing patient decision-support technologies: A qualitative field-testing study. Journal of Medical Internet Research, 9(3).

  • Feldman-Stewart, D., Brundage, M. D., Tishelman, C., SCRN Communication Team, T, Degner, L., Baile, W., et al. (2005). A conceptual framework for patient-professional communication: An application to the cancer context. Psycho-Oncology, 14(10), 801–809; discussion 810-1. https://doi.org/10.1002/pon.950.

    Article  Google Scholar 

  • Feldman-Stewart, D., O’Brien, M. A., Clayman, M., Davison, J., Jimbo, M., Labrecque, M., … Shepherd, H. (2012). 2012 Updates Chapter B: Providing Information About Options (Vol. 2012). Retrieved from http://ipdas.ohri.ca/IPDAS-Chapter-B.pdf

  • Feroze, U., Martin, D., Reina-Patton, A., Kalantar-Zadeh, K., & Kopple, J. D. (2010). Mental health, depression, and anxiety in patients on maintenance dialysis. Iranian Journal of Kidney Diseases, 4(3), 173–180.

    Google Scholar 

  • Ghahramani, F., & Wang, J. (2020). Impact of smartphones on quality of life: A health information behavior perspective. Information Systems Frontiers, 22, 1275–1290. https://doi.org/10.1007/s10796-019-09931-z.

    Article  Google Scholar 

  • Green, J. A. (1988). Minimizing malpractice risks by role clarification. Annals of Internal Medicine, 109(3), 234–241.

    Article  Google Scholar 

  • Guo, J., Fung, B. C. M., Iqbal, F., Kuppen, P. J. K., Tollenaar, R. A. E. M., Mesker, W. E., & Lebrun, J. J. (2017). Revealing determinant factors for early breast cancer recurrence by decision tree. Information Systems Frontiers, 19(6), 1233–1241. https://doi.org/10.1007/s10796-017-9764-0.

    Article  Google Scholar 

  • Harrison, J. D., Masya, L., Butow, P., Solomon, M., Young, J., Salkeld, G., & Whelan, T. (2009). Implementing patient decision support tools: Moving beyond academia? Patient Education and Counseling, 76(1), 120–125.

    Article  Google Scholar 

  • Heller, D., Levin, I. P., & Goransson, M. (2002). Selection of strategies for narrowing choice options: Antecedents and consequences. Organizational Behavior and Human Decision Processes, 89(2), 1194–1213.

    Article  Google Scholar 

  • Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS Quarterly, 28(1), 75–105.

    Article  Google Scholar 

  • Hirsch, O., Keller, H., Krones, T., & Donner-Banzhoff, N. (2011). Acceptance of shared decision making with reference to an electronic library of decision aids (arriba-lib) and its association to decision making in patients: an evaluation study. Implementation Science, 6.

  • Hoffman, A. S., Volk, R. J., Saarimaki, A., Stirling, C., Li, L. C., Härter, M., Kamath, G. R., & Llewellyn-Thomas, H. (2013). Delivering patient decision aids on the internet: Definitions, theories, current evidence, and emerging research areas. BMC Medical Informatics and Decision Making, 13(Suppl 2), S13.

    Article  Google Scholar 

  • Holmes-Rovner, M. (2007). International patient decision aid standards (IPDAS): Beyond decision aids to usual design of patient education materials. Health Expectations, 10(2), 103–107.

    Article  Google Scholar 

  • Holmes-Rovner, M., Nelson, W. L., Pignone, M., Elwyn, G., Rovner, D. R., O’Connor, A. M., et al. (2007). Are patient decision aids the best way to improve clinical decision making? Report of the IPDAS symposium. Medical Decision Making, 27(5), 599–608.

    Article  Google Scholar 

  • Huang, C. D., Goo, J., Behara, R. S., & Agarwal, A. (2020). Clinical decision support system for managing COPD-related readmission risk. Information Systems Frontiers, 22(3), 735–747. https://doi.org/10.1007/s10796-018-9881-4.

    Article  Google Scholar 

  • Institute of Medicine. (2001). Crossing the quality chasm: A new health system for the 21st century - Institute of Medicine. Institute of Medicine.

  • Izquierdo, F., Gracia, J., Guerra, M., Blasco, J. A., & Andradas, E. (2011). Health technology assessment-based development of a Spanish breast cancer patient decision aid. International Journal of Technology Assessment in Health Care, 27(4), 363–368.

    Article  Google Scholar 

  • Kamal, R., McDermott, D., & Cox, C. (2020). How has U.S. spending on healthcare changed over time? Peterson-KFF health system tracker. Retrieved February 7, 2021 from https://www.healthsystemtracker.org/chart-collection/u-s-spending-healthcare-changed-time

  • Kaprowy, J. A. (1991). A descriptive study to investigate end stage renal disease patients’ desire for information and preferences about roles in treatment decision making. School of Nursing. University of Manitoba, Winnipeg, Manitoba.

  • Kasper, J., Heesen, C., Kopke, S., Fulcher, G., & Geiger, F. (2011). Patients’ and Observers’ Perceptions of Involvement Differ. Validation Study on Inter-Relating Measures for Shared Decision Making. PLoS ONE, 6(10).

  • Kasper, J., Kopke, S., Muhlhauser, I., Nubling, M., & Heesen, C. (2008). ISRCTN25267500: Informed shared decision making in multiple sclerosis immunotherapy (ISDIMS). A randomised controlled trial to investigate the effects of an evidence-based decision aid on decision-making about immunotherapy in multiple sclerosis. European Journal of Neurology, 15(12), 1345–1352.

    Article  Google Scholar 

  • Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B., & Smith, D. H. (2004). Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Archives of Internal Medicine, 164(6), 659–663.

    Article  Google Scholar 

  • Kidachi, R., Kikuchi, A., Nishizawa, Y., Hiruma, T., & Kaneko, S. (2007). Personality types and coping style in hemodialysis patients. Psychiatry and Clinical Neurosciences., 61, 339–347. https://doi.org/10.1111/j.1440-1819.2007.01716.x.

    Article  Google Scholar 

  • Kurani, N., McDermott, D., & Shanosky, N. (2020). How does the quality of the U.S. healthcare system compare to other countries? Peterson-Kaiser health system tracker. Retrieved February7, 2021 from https://www.healthsystemtracker.org/chart-collection/quality-u-s-healthcare-system-compare-countries/

  • Levine, M. N., Gafni, A., Markham, B., & MacFarlane, D. (1992). A bedside decision instrument to elicit a Patient’s preference concerning adjuvant chemotherapy for breast Cancer. Annals of Internal Medicine, 117(1), 53–58.

    Article  Google Scholar 

  • Mertens, S., Gailly, F., Van Sassenbroeck, D., & Poels, G. (2020). Integrated declarative process and decision discovery of the emergency care process. Information Systems Frontiers. https://doi.org/10.1007/s10796-020-10078-5.

  • Miller, K., & Mansingh, G. (2017). OptiPres: A distributed mobile agent decision support system for optimal patient drug prescription. Information Systems Frontiers, 19(1), 129–148. https://doi.org/10.1007/s10796-015-9595-9.

    Article  Google Scholar 

  • Morana, S., Schacht, S., Scherp, A., & Maedche, A. (2017). A review of the nature and effects of guidance design features. Decision Support Systems, 97, 31–42. https://doi.org/10.1016/J.DSS.2017.03.003.

    Article  Google Scholar 

  • Ng, C. J., Mathers, N., Bradley, A., & Colwell, B. (2014). A “combined framework” approach to developing a patient decision aid: The PANDAs model. BMC Health Services Research., 14, 503. https://doi.org/10.1186/s12913-014-0503-7.

    Article  Google Scholar 

  • O’Connor, A. M. (1993). User Manual – Decisional Conflict Scale. https://decisionaid.ohri.ca/eval_dcs.html. https://doi.org/10.1177/0272989X9601600114

  • O’Connor, A. M., Bennett, C., Stacey, D., Barry, M. J., Col, N. E., Eden, K. B., et al. (2007). Do patient decision aids meet effectiveness criteria of the international patient decision aid standards collaboration? A systematic review and meta-analysis. Medical Decision Making, 27(5), 554–574.

    Article  Google Scholar 

  • Olling, K., Bechmann, T., Madsen, P. H., Jakobsen, E. H., Toftdahl, D. B., Hilberg, O., … Steffensen, K. D. (2019). Development of a patient decision aid template for use in different clinical settings. European Journal for Person Centered Healthcare.

  • Parker, S. M., Clayton, J. M., Hancock, K., Walder, S., Butow, P. N., Carrick, S., et al. (2007). A systematic review of prognostic/end-of-life communication with adults in the advanced stages of a life-limiting illness: Patient/caregiver preferences for the content, style, and timing of information. Journal of Pain and Symptom Management, 34(1), 81–93.

    Article  Google Scholar 

  • Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2008). A design science research methodology for information systems research. Journal of Management Information Systems, 24(3), 45–77.

    Article  Google Scholar 

  • Phillips-Wren, G., Jefferson, T., & McKniff, S. (2019). Cognitive bias and decision aid use under stressful conditions. Journal of Decision Systems., 28, 162–184. https://doi.org/10.1080/12460125.2019.1643695.

    Article  Google Scholar 

  • Piri, S., Delen, D., Liu, T., & Zolbanin, H. M. (2017). A data analytics approach to building a clinical decision support system for diabetic retinopathy: Developing and deploying a model ensemble. Decision Support Systems, 101, 12–27. https://doi.org/10.1016/J.DSS.2017.05.012.

    Article  Google Scholar 

  • Rahimi, A., Ahmadi, F., & Gholyaf, M. (2008). The effects of continuous care model on depression, anxiety, and stress in patients on hemodialysis. Nephrology Nursing Journal, 35(1), 39–44.

    Google Scholar 

  • Schroy, P. C., Emmons, K., Peters, E., Glick, J. T., Robinson, P. A., Lydotes, M. A., et al. (2011). The impact of a novel computer-based decision aid on shared decision making for colorectal cancer screening: A randomized trial. Medical Decision Making., 31, 93–107. https://doi.org/10.1177/0272989X10369007.

    Article  Google Scholar 

  • Scott, G. C., & Lenert, L. A. (2000). What is the next step in patient decision support? Journal of the American Medical Informatics Association, 784–788.

  • Sepucha, K., Thomson, R., Borkhoff, C. M., Lally, J., Levin, C. A., Matlock, D. D., … Wills, C. E. (2012). 2012 Updated Chapter L: Establishing The Effectiveness.

  • Sinaiko, A. D., Szumigalski, K., Eastman, D., & Chien, A. T. (2019). Delivery of patient centered care in the US health care system: what is standing in its way? Retrieved from https://www.academyhealth.org/sites/default/files/deliverypatientcenteredcare_august2019.pdf.

  • Stacey, D., Bennett, C. L., Barry, M. J., Col, N. F., Eden, K. B., Holmes-Rovner, M., et al. (2011). Decision aids for people facing health treatment or screening decisions. Cochrane Database of Systematic Reviews, 10.

  • Thomson, M., & Hoffman-Goetz, L. (2007). Readability and cultural sensitivity of web-based patient decision aids for cancer screening and treatment: A systematic review. Medical Informatics and the Internet in Medicine, 32(4), 263–286.

    Article  Google Scholar 

  • Thomson, R. G., Eccles, M. P., Steen, I. N., Scheme, J., Stobbart, L., Murtagh, M. J., & May, C. R. (2007). A patient decision aid to support shared decision-making on anti-thrombotic treatment of patients with atrial fibrillation: Randomised controlled trial. Quality & Safety in Health Care, 16(3), 216–223.

    Article  Google Scholar 

  • Topuz, K., Zengul, F. D., Dag, A., Almehmi, A., & Yildirim, M. B. (2018). Predicting graft survival among kidney transplant recipients: A Bayesian decision support model. Decision Support Systems, 106, 97–109. https://doi.org/10.1016/J.DSS.2017.12.004.

    Article  Google Scholar 

  • Ubel, P. A., Loewenstein, G., & Jepson, C. (2005). Disability and sunshine: Can hedonic predictions be improved by drawing attention to focusing illusions or emotional adaptation? Journal of Experimental Psychology: Applied, 11(2), 111–123.

    Google Scholar 

  • Vogus, T. J., Gallan, A., Rathert, C., El-Manstrly, D., & Strong, A. (2020). Whose experience is it anyway? Toward a constructive engagement of tensions in patient-centered health care. Journal of Service Management., 31, 979–1013. https://doi.org/10.1108/JOSM-04-2020-0095.

    Article  Google Scholar 

  • Vromans, R. D., van Eenbergen, M. C., Pauws, S. C., Geleijnse, G., van der Poel, H. G., van de Poll-Franse, L. V., & Krahmer, E. J. (2019a). Communicative aspects of decision aids for localized prostate cancer treatment – A systematic review. Urologic Oncology: Seminars and Original Investigations. https://doi.org/10.1016/j.urolonc.2019.04.005.

  • Vromans, R., Tenfelde, K., Pauws, S., van Eenbergen, M., Mares-Engelberts, I., Velikova, G., van de Poll-Franse, L., & Krahmer, E. (2019b). Assessing the quality and communicative aspects of patient decision aids for early-stage breast cancer treatment: A systematic review. Breast Cancer Research and Treatment., 178, 1–15. https://doi.org/10.1007/s10549-019-05351-4.

    Article  Google Scholar 

  • Walczak, S., & Velanovich, V. (2018). Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks. Decision Support Systems, 106, 110–118. https://doi.org/10.1016/J.DSS.2017.12.007.

    Article  Google Scholar 

  • Wang, L.-J., & Chen, C.-K. (2012). The psychological impact of hemodialysis on patients with chronic renal failure, The Psychological Impact of Hemodialysis on Patients with Chronic Renal Failure.

  • Wilson, T. D., Wheatley, T., Meyers, J. M., Gilbert, D. T., & Axsom, D. (2000). Focalism: A source of durability bias in affective forecasting. Journal of Personality and Social Psychology, 78(5), 821–836.

    Article  Google Scholar 

  • Xiao, B., & Benbasat, I. (2018). An empirical examination of the influence of biased personalized product recommendations on consumers’ decision making outcomes. Decision Support Systems, 110, 46–57. https://doi.org/10.1016/J.DSS.2018.03.005.

    Article  Google Scholar 

  • Yang, M., Jiang, J., Kiang, M., & Yuan, F. (2021). Re-examining the impact of multidimensional trust on patients’ online medical consultation service continuance decision. Information Systems Frontiers, 1–25. https://doi.org/10.1007/s10796-021-10117-9.

  • Yu, C. H., Ke, C., Jovicic, A., Hall, S., Straus, S. E., Cantarutti, P., et al. (2019). Beyond pros and cons-developing a patient decision aid to cultivate dialog to build relationships: Insights from a qualitative study and decision aid development. BMC Medical Informatics and Decision Making., 19, 186. https://doi.org/10.1186/s12911-019-0898-5.

    Article  Google Scholar 

  • Zeballos-Palacios, C. L., Hargraves, I. G., Noseworthy, P. A., Branda, M. E., Kunneman, M., Burnett, B., … McBane, R. (2019). Developing a conversation aid to support shared decision Making: Reflections on Designing Anticoagulation Choice. Mayo Clinic Proceedings. https://doi.org/10.1016/j.mayocp.2018.08.030.

  • Zhuang, Z. Y., Wilkin, C., & Ceglowski, A. (2012). A framework for an intelligent decision support system: A case in pathology test ordering. Decision Support Systems.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Sarnikar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motorny, S., Sarnikar, S. & Noteboom, C. Design of an Intelligent Patient Decision aid Based on Individual Decision-Making Styles and Information Need Preferences. Inf Syst Front 24, 1249–1264 (2022). https://doi.org/10.1007/s10796-021-10125-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-021-10125-9

Keywords