Skip to main content

Advertisement

Log in

Innovation investment and subsidy strategy in two-sided market

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

This paper investigates two competitive strategies from two-sides of the e-commerce platform, that is, innovation investment on seller side and product subsidy investment on consumer side. We take competition intensity on seller side into account and analyze how consumer behaviors affect the platform’s strategy under three scenarios: (1) single purchase on single platform(S); (2) single purchase on multi-platforms(M); (3) repeat purchase on single platform (R). The results revel that the innovation investment for sellers is better off in S scenario. However, when the transfer cost is low, taking subsidy strategy is more profitable for the platform in R scenario. If the internal price competition is not sufficiently fierce, subsidy strategy is an efficient approach to reduce the price in M scenario. It is surprising that if the seller’s innovation capability is sufficiently high, the innovation investment strategy dominates no matter what consumer behaviors are. Moreover, how much the platform invests on the seller’s innovation is independent on the consumer’s behavior. These findings have practical managerial insights for the manager of platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://www.baimaclub.com/html/news/gsdt/20151203/106.html (a news about Amazon in Chinese).

  2. http://tech.sina.com.cn/i/2011-02-24/18275215242.shtml (a news about Taobao in Chinese).

  3. https://baijiahao.baidu.com/s?id=1664504230327549859&wfr=spider&for=pc&isFailFlag=1(a news about Taobao in Chinese).

  4. https://www.huffingtonpost.com/alex-moazed/7-strategies-for-solving-_b_6809384.html.

  5. https://m.chinanews.com/wap/detail/zw/business/2020/01-17/9062644.shtml (a news about Pinduoduo in Chinese).

References

  1. Ansari A, Mela CF, Neslin SA (2008) Customer channel migration. J Mark Res 45(1):60–76

    Article  Google Scholar 

  2. Armstrong M (2006) Competition in two-sided markets. RAND J Econ 37(3):668–691

    Article  Google Scholar 

  3. Anderson EG, Parker G, Tan B (2014) Platform performance investment in the presence of network externalities. Inf Syst Res 25(1):152–172

    Article  Google Scholar 

  4. Brunn P, Jensen M, Skovgaard J (2002) e-Marketplaces: Crafting A Winning Strategy. Eur Manag J 20(3):286–298

    Article  Google Scholar 

  5. Belleflamme P, Peitz M (2010) Platform competition and seller investment incentives. Eur Econ Rev 54(8):1059–1076

    Article  Google Scholar 

  6. Bhattacherjee A (2001) An empirical analysis of the antecedents of electronic commerce service continuance. Decis Support Syst 32:201–214

    Article  Google Scholar 

  7. Cao J, Chen H, Sun W (2010) The effect of multiple platform on B2B platform competition strategy–-based on bilateral market. J Finan Econ 36(9):91–99

    Google Scholar 

  8. Chen S, Leteney F (2000) Get real! Managing the next stage of Internet retail. Eur Manag J 18(5):519–528

    Article  Google Scholar 

  9. Dickinger A, Arami M, Meyer D (2008) The role of perceived enjoyment and social norm in the adoption of technology with network externalities. European J Inf Syst 17(1):4–11

    Article  Google Scholar 

  10. Darley WK, Blankson C, Luethge DJ (2010) Toward an integrated framework for online consumer behavior and decision making process: A review. Psychol Mark 27(2):94–116

    Article  Google Scholar 

  11. Economides N, Katsamakas E (2006) Linux vs. Windows: A comparison of application and platform innovation incentives for open source and proprietary software platforms. In The Economics of Open Source Software Development (pp. 207–218). Elsevier.

  12. Eisenmann T, Parker G, Van MW (2006) Strategies for two-sided markets. Harv Bus Rev 84(10):92–101

    Google Scholar 

  13. Frishammar J, Cenamor J, Cavalli-Björkman H, Hernell E, Carlsson J (2018) Digital strategies for two-sided markets: A case study of shopping malls. Decis Support Syst 108:34–44

    Article  Google Scholar 

  14. Gabszewicz J, Wauthy X (2014) Vertical product differentiation and two-sided markets. Economics Letter 123(1):58–61

    Article  Google Scholar 

  15. Goldbach T, Alexander B, Peter B (2018) Differential effects of formal and self-control in mobile platform ecosystems: Multi-method findings on third-party developers’ continuance intentions and application quality. Inf Manag 55(3):271–284

    Article  Google Scholar 

  16. Gui Y, Gong B (2016) Quality assurance competition strategy under B2C platform. Discrete Dyn Nature Soc 2016:1–5

    Article  Google Scholar 

  17. Hagiu A (2009) Two-sided platforms: product variety and pricing structures. J Econ Manag Strategy 18(4):1011–1043

    Article  Google Scholar 

  18. Huang P, Gaoyan L, Yi, X (2019) Quality regulation strategy in two sided market. Management Science. Forth coming.

  19. Huang H, Zhao B, Zhao H, Zhuang Z, Wang Z, Yao X, Wang X, Jin H, Fu X (2018) A cross-platform consumer behavior analysis of large-scale mobile shopping data. In Proceedings of the 2018 World Wide Web Conference (pp. 1785–1794).

  20. Hudson S, Thal K (2013) The impact of social media on the consumer decision process: Implications for tourism marketing. J Travel Tour Mark 30(1–2):156–160

    Article  Google Scholar 

  21. Jorde TM, Sidak JG, Teece DJ (2000) Innovation, investment, and unbundling. Yale J on Reg 17:1

    Google Scholar 

  22. Lam W (2017) Switching costs in two-sided markets. J Industrial Econ 65(1):136–182

    Article  Google Scholar 

  23. Li H, Shen Q, Bart Y (2018) Local market characteristics and online-to-offline commerce: An empirical analysis of groupon. Manag Sci 64(4):1860–1878

    Article  Google Scholar 

  24. Ma S, Li G, Sethi SP, Zhao X (2019) Advance selling in the presence of market power and risk averse consumers. Decis Sci 50(1):1477–1973

    Article  Google Scholar 

  25. Ma B, Xu X, Bian SY, Y, (2017) Online search-based advertising strategy for e-Business platform with the consideration of consumer search cost. Kybernetes 46(2):291–309

    Article  Google Scholar 

  26. Parker G, Van Alstyne M (2005) Two-sided network effects: A theory of information product design. Manage Sci 51(10):1494–1504

    Article  Google Scholar 

  27. Pun H (2013) Channel structure design for complementary products under a co-competitive environment. Decis Sci 44(4):785–796

    Article  Google Scholar 

  28. Reisinger M (2014) Two-part tariff competition between two-sided platforms. Eur Econ Rev 68:168–180

    Article  Google Scholar 

  29. Ribeiro VM, Correia J, Resende J (2016) Nesting vertical and horizontal differentiation in two-sided markets. Bull Econ Res 68(S1):133–145

    Article  Google Scholar 

  30. Rochet JC (2006) Two-sided markets: a progress report. Rand Journal of Economics 37(3):645–667

    Article  Google Scholar 

  31. Rochet JC, Tirolead J (2004) Defining two-sided markets, Working Paper. IDEI University of Toulouse. 1–28.

  32. Roger G (2017) Two-sided competition with vertical differentiation. J Econ 120(3):193–217

    Article  Google Scholar 

  33. Song P, Zheng C, Zhang C, Yu X (2018) Data analytics and firm performance: an empirical study in an online B2C platform. Inf Manag 55(5):633–642

    Article  Google Scholar 

  34. Triole J, Rochet JC (2014) Platform competition in two-sided markets. Compet Policy Int 10(2):180–218

    Google Scholar 

  35. Wen Z, Lin L (2016) Optimal fee structures of crowdsourcing platforms. Decis Sci 47(5):820–850

    Article  Google Scholar 

  36. Weyl EG (2010) A price theory of multi-sided platforms. American Econ Rev 100(4):1642–1672

    Article  Google Scholar 

  37. Xu Z, Wang Y, Fang Y, Tan B, Sun H (2017) Understanding the formation of reciprocal hyperlinks between e-marketplace sellers. Decis Support Syst 98:89–98

    Article  Google Scholar 

  38. Xiang L, Zheng X, Lee MK, Zhao D (2016) Exploring consumers’ impulse buying behavior on social commerce platform: The role of parasocial interaction. Int J Inf Manage 36(3):333–347

    Article  Google Scholar 

  39. Zott C, Amit R, Donlevy J (2000) Strategies for value creation in e-commerce: best practices in Europe. European Manag J 18:463–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Equilibrium Outcomes

2.1 (a) Single purchase from single platform

The seller’s utility functions on platform 1 and platform 2 are given by

$$ U_{s1} = \alpha_{s} \tilde{n}_{b1} + \left( {p - \gamma n_{s1} } \right)n_{b1} - F_{1} + e_{1} - \theta_{j1} $$

and.

\(U_{s2} = \alpha_{s} \tilde{n}_{b2} + \left( {p - \gamma n_{s2} } \right)n_{b2} - F_{2} - \theta_{j2}\).

The consumer’s utility function is given by

$$ U_{b1} = w + \alpha_{b} \tilde{n}_{s1} - \left( {p - \gamma n_{s1} } \right) - tx $$

and

$$U_{b2} = w + \alpha_{b} \tilde{n}_{s2} - \left( {p - \gamma n_{s2} - e_{2} } \right) - t\left( {1 - x} \right)$$

An indifferent consumer \(\tilde{x}\) is under the equilibrium of \(U_{b1} \left( {\tilde{x}} \right) = U_{b2} \left( {\tilde{x}} \right)\) when it accomplishes game equilibrium. According to consumer rational expectation theory, we can get \(\tilde{n}_{b1} = n_{b1} = \tilde{x}\). So we get

$$ w + \alpha_{b} \tilde{n}_{s1} - \left( {p - \gamma n_{s1} } \right) - tn_{b1} = w + \alpha_{b} \tilde{n}_{s2} - \left( {p - \gamma n_{s2} - e_{2} } \right) - t\left( {1 - n_{b1} } \right) $$

Then, we get the number of conusmers as

$$ n_{b1} = \frac{1}{2} + \frac{{\left( {\alpha_{b} + \gamma } \right)\left( {n_{s1} - n_{s2} - e_{2} } \right)}}{2t} $$
(27)

and according to \(n_{b2} = 1 - n_{b1}\), we can get

$$ n_{b2} = \frac{1}{2} - \frac{{\left( {\alpha_{b} + \gamma } \right)\left( {n_{s1} - n_{s2} - e_{2} } \right)}}{2t} $$
(28)

The demand function on the seller side on platform 1,2 are

$$ n_{s1} = \frac{{\alpha_{s} \tilde{n}_{b1} + \left( {p - \gamma n_{s1} } \right)n_{b1} - F_{1} + e_{1} }}{\theta }, $$
$$ n_{s2} = \frac{{\alpha_{s} \tilde{n}_{b2} + \left( {p - \gamma n_{s2} } \right)n_{b2} - F_{2} }}{\theta } $$

separately.

So

$$ n_{s1} = \frac{{\alpha_{s} \tilde{n}_{b1} + \left( {p - \gamma n_{s1} } \right)\left[ {\frac{1}{2} + \frac{{\left( {\alpha_{b} + \gamma } \right)\left( {n_{s1} - n_{s2} - e_{2} } \right)}}{2t}} \right] - F_{1} + e_{1} }}{\theta } $$
$$ n_{s2} = \frac{{\alpha_{s} \tilde{n}_{b2} + \left( {p - \gamma n_{s2} } \right)\left[ {\frac{1}{2} - \frac{{\left( {\alpha_{b} + \gamma } \right)\left( {n_{s1} - n_{s2} - e_{2} } \right)}}{2t}} \right] - F_{2} }}{\theta } $$

According to \(U_{s1} = U_{s2}\), substitute \(A1\) and \(A2\) into \(U_{s1}\) and \(U_{s2}\). Then substitute \(n_{s1}\) and \(n_{s2}\) into \(\pi_{1}\) and \(\pi_{2}\). First, platform1 determines the innovation level \(e_{1}\) and platform2 determines subsidy \(e_{2}\). Then, two platforms determine the access fee simultaneously. We use Backward Induction to solve the problem.

We have Hessian Metric \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{1} \partial F_{2} }}} \\ {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{2} \partial F_{1} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{2}^{2} }}} \\ \end{array} } \right| > 0\), and \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{1} \partial F_{2} }}} \\ {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{2} \partial F_{1} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{2}^{2} }}} \\ \end{array} } \right| > 0\), therefore, \(\pi_{1}\) and \(\pi_{2}\) are concave function on \(F_{1}\) and \(F_{2}\).

Thus, the optimal access fee under \(\frac{{\partial \pi_{i} }}{{\partial F_{i} }} = 0\) is given by

$$ F_{1}^{{s{*}}} = \frac{{k\alpha_{s} + 2p}}{4k} $$
$$ F_{2}^{{s{*}}} = \frac{{k\alpha_{s} + 2p}}{2k - 1}. $$

The optimal investment level for both platforms are

$$ e_{1}^{{s{*}}} = \frac{1}{k}, $$
$$ e_{2}^{{s{*}}} = \frac{{\alpha_{s} + 2p}}{2k - 1}. $$

By maximizing profits for platform 1 and 2, we get the following:

$$ \pi_{1}^{{s{*}}} = \frac{{k^{3} \left( {\alpha_{s} + 2p} \right)^{2} \left[ {2t\left( {\theta + \gamma } \right) - \alpha_{s} \left( {\gamma + \alpha_{d} } \right)} \right]}}{{8\left( {k - 1} \right)^{2} \left( {\theta + \gamma } \right)\left[ {\alpha_{s} \left( {\gamma + \alpha_{d} } \right) - t\left( {\theta + \gamma } \right)} \right]}} $$
$$ \pi_{2}^{{s{*}}} = \frac{{k^{3} \left( {2k - 1} \right)\left( {\alpha_{s} + 2p} \right)\left( {\gamma + \alpha_{d} } \right)\alpha_{s} }}{{16\left( {k - 1} \right)^{2} \left( {\theta + \gamma } \right)[\alpha_{s} \left( {\gamma + \alpha_{d} } \right) - t\left( {\theta + \gamma } \right)]^{2} }}. $$

(b) Single purchase from multi-platform

The seller’s utility functions on platform 1 and platform 2 are given by

$$ U_{s1} = \alpha_{s} \tilde{n}_{b1} + \left( {p - \gamma n_{s1} } \right)n_{b1} - F_{1} + e_{1} - \theta_{j1} $$

and

$$U_{s2} = \alpha_{s} \tilde{n}_{b2} + \left( {p - \gamma n_{s2} } \right)n_{b2} - F_{2} - \theta_{j2}$$

The consumer’s utility function is given by

$$U_{b1} = w + \alpha_{b} \tilde{n}_{s1} - \left( {p - \gamma n_{s1} } \right) - tx,$$
$$ U_{b2} = w + \alpha_{b} \tilde{n}_{s2} - \left( {p - \gamma n_{s2} - e_{2} } \right) - t\left( {1 - x} \right) $$

and

$$ U_{b1,2} = 2w + \alpha_{b} \tilde{n}_{s} - \left( {2p - \gamma n_{s} - e_{2} } \right) - t $$

Given the indifference location between 1 and two platforms is \(\tilde{x}_{l}\), the Nash equilibrium is \(U_{b1} \left( {\tilde{x}_{l} } \right) = U_{b1,2} \left( {\tilde{x}_{l} } \right)\); given the indifference location in platform 2 or two platforms is \(\tilde{x}_{r}\), the Nash equilibrium is \(U_{b2} \left( {\tilde{x}_{r} } \right) = U_{b1,2} \left( {\tilde{x}_{r} } \right)\). According to the consumer rational expectation theory, we can get \(\tilde{n}_{b1} = n_{b1} = \tilde{x}_{r}\). Using the traditional Hottling model theory and consumer rational expectation hypothesis, we get

$$ n_{b1} = \frac{{w + \alpha_{b} \tilde{n}_{s1} - \left( {p - \gamma n_{s1} } \right)}}{t} $$
(29)
$$ n_{b2} = \frac{{w + \alpha_{b} \tilde{n}_{s2} - \left( {p - \gamma n_{s2} } \right) + e_{2} }}{t}, $$
(30)

Based on \(n_{b1} + n_{b2} - n_{b1,2} = 1\), we can get

$$ n_{b1,2} = \frac{{2w + \alpha_{b} \tilde{n}_{s} - \left( {2p - \gamma n_{s} } \right) + e_{2} - t}}{t} $$
(31)

According to \(U_{s1} = U_{s2}\), substitute \(A3,A4\) and \(A5\) into \(U_{s1}\) and \(U_{s2}\), we get \(n_{s1}\) and \(n_{s2}\).

$$ n_{s1} = \frac{{\alpha_{s} \left( {p - w} \right) - t\left( {e_{1} - F_{1} + p} \right)}}{{\alpha_{s} \left( {\gamma + \alpha_{b} } \right) - t\left( {\theta + \gamma } \right)}}, $$
$$ n_{s2} = \frac{{\alpha_{s} \left( {p - w - e_{2} } \right) - t\left( {p - F_{2} } \right)}}{{\alpha_{s} \left( {\gamma + \alpha_{b} } \right) - t\left( {\theta + \gamma } \right)}}. $$

Then substitute \(n_{s1}\) and \(n_{s2}\) into \(\pi_{1}\) and \(\pi_{2}\). First, platform1 determines the innovation level \(e_{1}\) and platform2 determines subsidy \(e_{2}\). Then, two platforms determine the access fee simultaneously. We use Backward Induction to solve the problem.

We have Hessian Metric \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{1} \partial F_{2} }}} \\ {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{2} \partial F_{1} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{2}^{2} }}} \\ \end{array} } \right| > 0\), and \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{1} \partial F_{2} }}} \\ {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{2} \partial F_{1} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{2}^{2} }}} \\ \end{array} } \right| > 0\), therefore, \(\pi_{1}\) and \(\pi_{2}\) are concave function on \(F_{1}\) and \(F_{2}\).

Thus, the optimal access fee under \(\frac{{\partial \pi_{i} }}{{\partial F_{i} }} = 0\) is given by

$$ F_{1}^{{M{*}}} = \frac{{k\left( {\theta p - \gamma } \right) + w}}{\theta k}, $$
$$ F_{2}^{{M{*}}} = \frac{{k\left( {\theta p - \theta - \gamma } \right) + w}}{\theta k}. $$

The optimal investment level for both platforms are

$$ e_{1}^{{M{*}}} = \frac{1}{k}, $$
$$ e_{2}^{{M{*}}} = \frac{{k\left( {\theta p - \alpha_{b} + \gamma } \right) - w\left( {k\theta + 1} \right)}}{\theta k}. $$

By maximizing profits for platform 1 and 2, we get

$$ \pi_{1}^{{M{*}}} = \frac{{\left[ {2k\left( {\theta p - \gamma } \right) + 2w - \theta } \right]\left[ {\theta k\alpha_{s} \left( {p - w} \right) + t\left( {w - \theta - k\gamma } \right)} \right]}}{{2k^{2} \theta^{2} \left[ {\alpha_{s} \left( {\gamma + \alpha_{b} } \right) - t\left( {\theta + \gamma } \right)} \right]}} $$
$$ \pi_{2}^{{M{*}}} = \frac{{t\left[ {k\left( {\theta p - \theta - \gamma } \right) + w} \right] - \left[ {\theta \left( {w - p} \right) + \alpha_{b} + \gamma } \right]\left[ {k\left( {\theta p - \alpha_{b} - \gamma } \right) - w\left( {k\theta + 1} \right)} \right]}}{{\theta^{2} kt}}. $$

(c) Repeat purchase

The second period utility function of the consumers who purchase from platform 1 in the first period is

$$ U_{{b1\left( 2 \right)}} = \left\{ {\begin{array}{*{20}c} {w + \alpha _{b} \tilde{n}_{{s1\left( 2 \right)}} - \left( {p - \gamma n_{{s1\left( 2 \right)}} } \right) - tx\;platform1} \\ {w + \alpha _{b} \tilde{n}_{{s2\left( 2 \right)}} - \left( {p - \gamma n_{{s2\left( 2 \right)}} - e_{2} } \right) - t\left( {1 - x} \right) - s\;platform2} \\ \end{array} } \right. $$

The second period utility function of the consumers who purchase from platform 2 in the first period is

$$ U_{{b_{{2\left( 2 \right)}} }} = \left\{ {\begin{array}{*{20}c} {w + \alpha _{b} \tilde{n}_{{s_{{1\left( 2 \right)}} }} - \left( {p - \gamma n_{{s1\left( 2 \right)}} } \right) - tx - s\;platform1} \\ {w + \alpha _{b} \tilde{n}_{{s_{{2\left( 2 \right)}} }} - \left( {p - \gamma n_{{s_{{2\left( 2 \right)}} }} - e_{2} } \right) - t\left( {1 - x} \right)\;platform2} \\ \end{array} } \right. $$

The seller’s utility function in the second period is

$$ U_{{s_{{\left( 2 \right)}} }} = \left\{ {\begin{array}{*{20}c} {\alpha \tilde{n}_{{b_{{1\left( 2 \right)}} }} + \left( {p - \gamma n_{{s_{{1\left( 2 \right)}} }} } \right)n_{{b_{{1\left( 2 \right)}} }} - F_{{1\left( 2 \right)}} + e_{1} \;platform1} \\ {\alpha \tilde{n}_{{b_{{2\left( 2 \right)}} }} + \left( {p - \gamma n_{{s_{{2\left( 2 \right)}} }} } \right)n_{{b_{{2\left( 2 \right)}} }} - F_{{2\left( 2 \right)}} \;platform2} \\ \end{array} } \right. $$

According to consumer rational expectation theory, the number of \(\eta\) percent consumers who choose platform 1 and 2 in the second period are

$$ n_{b1\left( 2 \right)}^{\eta } = \eta \frac{{\left( {\alpha_{b} + \gamma } \right)\left( {n_{s1\left( 2 \right)} - n_{s2\left( 2 \right)} } \right) - e_{2} + t}}{2t} + \frac{\eta s}{{2t}}\left( {n_{b1\left( 2 \right)} - n_{b2\left( 2 \right)} } \right) $$
(32)
$$ n_{b2\left( 2 \right)}^{\eta } = \eta \frac{{\left( {\alpha_{b} + \gamma } \right)\left( {n_{s2\left( 2 \right)} - n_{s1\left( 2 \right)} } \right) + e_{2} + t}}{2t} + \frac{\eta s}{{2t}}\left( {n_{b2\left( 2 \right)} - n_{b1\left( 2 \right)} } \right) $$
(33)

We have \(\left( {1 - \eta } \right)\) percent consumers keeping the same choice for two periods. Therefore, the number of consumers who choose platform1 and platform 2 in the second period are as follows.

$$ n_{b1\left( 2 \right)}^{1 - \eta } = \left( {1 - \eta } \right)n_{b1\left( 1 \right)} $$
$$ n_{b2\left( 2 \right)}^{1 - \eta } = \left( {1 - \eta } \right)n_{b2\left( 1 \right)} $$

The number of consumers who choose platform 1 and platform 2 in the second period are

$$ n_{b1\left( 2 \right)} = n_{b1\left( 2 \right)}^{\eta } + n_{b1\left( 2 \right)}^{1 - \eta } $$
$$ n_{b2\left( 2 \right)} = n_{b2\left( 2 \right)}^{\eta } + n_{b2\left( 2 \right)}^{1 - \eta } $$

We assume consumers are shortsighted and they are not concerned about the impact of their decision in the first period on the second period. Let \(\sigma\) denotes the discount factor of future profit. Then the platform i’s profit function in the first period is

$$ \pi_{i\left( 1 \right)} = F_{i\left( 1 \right)} n_{si\left( 1 \right)} + \sigma \pi_{i\left( 2 \right)} $$

The number of consumers who choose platform 1 and platform 2 in the second period are shown in equations \( A6\) and \(A7\), respectively. The platform determines the innovation level and the access fee at the same time. In the first period, platform 1,2 determines the innovation levels and the access fee at the same time. The profit functions of platform 1 and platform 2, respectively, are as follows:

$$ \pi_{{1_{\left( 1 \right)} }} = \left( {F_{{1_{\left( 1 \right)} }} - \frac{1}{2}ke_{1\left( 1 \right)}^{2} } \right)n_{{s_{1\left( 1 \right)} }} + \sigma \pi_{{1_{\left( 2 \right)} }} $$
$$ \pi_{{2_{\left( 1 \right)} }} = F_{{2_{\left( 1 \right)} }} n_{{s_{2\left( 1 \right)} }} - e_{2\left( 1 \right)}^{{}} n_{{b_{2\left( 1 \right)} }} + \sigma \pi_{{2_{\left( 2 \right)} }} $$

We have Hessian Metric \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{1} \partial F_{2} }}} \\ {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{2} \partial F_{1} }}} & {\frac{{\partial^{2} \pi_{1} }}{{\partial F_{2}^{2} }}} \\ \end{array} } \right| > 0\), and \(\left| {\begin{array}{*{20}c} {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{1}^{2} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{1} \partial F_{2} }}} \\ {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{2} \partial F_{1} }}} & {\frac{{\partial^{2} \pi_{2} }}{{\partial F_{2}^{2} }}} \\ \end{array} } \right| > 0\), therefore, \(\pi_{1}\). and \(\pi_{2}\) are concave function on \(F_{1}\) and \(F_{2}\).

For the second period, we get the optimal innovation level of platform 1,2 as

$$ e_{1\left( 2 \right)}^{{R{*}}} = \frac{1}{k} $$
$$ e_{2\left( 2 \right)}^{{R{*}}} = \frac{s\eta }{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}} $$

Given the same utility for sellers when they join two platforms under equilibrium, and \(\frac{{\partial \pi_{i\left( 2 \right)} }}{{\partial F_{i\left( 2 \right)} }} = 0\), we can get the access fee as following:

$$ F_{1\left( 2 \right)}^{{R{*}}} - F_{2\left( 2 \right)}^{{R{*}}} = \frac{{\eta \left[ {s\left( {\alpha_{s} + 2p} \right) + s^{2} \eta - \left( {k + 3} \right)} \right]}}{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}} $$

And the optimal profit is

$$ \frac{\eta \left[ \left( \alpha_{s} + 2p \right){\mathcal{R}} -k(p+\alpha_{s} ) \left( \gamma + \alpha_b \right) \right]}{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}$$

where \({\mathcal{R}} = 3s^{2} - \left( {\gamma + \alpha_{b} } \right)s.\)

For the first period, the optimal innovation level of platform 1,2 are

$$ e_{1\left( 1 \right)}^{{R{*}}} = \frac{1}{k}, $$
$$ e_{2\left( 1 \right)}^{{R{*}}} = \frac{{\alpha_{s} + 2p}}{{\left( {2k - 1} \right)\eta }}. $$

The difference of optimal access fees of platforms (\(i = 1,2\)) is

$$ F_{1\left( 1 \right)}^{{R{*}}} - F_{2\left( 1 \right)}^{{R{*}}} = \frac{{\eta \left[ {s\left( {\alpha_{s} + 2p} \right) + k\left( {p + \alpha_{s} } \right)\left( {\gamma + \alpha_{b} } \right)} \right]}}{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}} $$

Appendix 2

5.1 Proof of Propositions

5.1.1 Proof of Proposition 1

From expressions of \({F}_{1}^{s*}\) and \({F}_{2}^{s*}\), we have \({F}_{1}^{s*}-{F}_{2}^{s*}=-\frac{\left(k{\alpha }_{s}+2p\right)\left(2k+1\right)}{4k\left(2k-1\right)}<0\), which implies that \({F}_{1}^{s*}<{F}_{2}^{s*}.\)

According to \({\pi }_{1}^{s*}\) and\({\pi }_{2}^{s*}\), we set \({\mathcal{H}} = \frac{{\pi_{1}^{{s{*}}} }}{{\pi_{2}^{{s{*}}} }} = \frac{{2\left( {\alpha_{s} + 2p} \right)\left[ {2t\left( {\theta + \gamma } \right) - \alpha_{s} \left( {\gamma + \alpha_{d} } \right)} \right]\left[ {\alpha_{s} \left( {\gamma + \alpha_{d} } \right) - t\left( {\theta + \gamma } \right)} \right]}}{{\left( {2k - 1} \right)\left( {\gamma + \alpha_{d} } \right)\alpha_{s} }}\). If \(p > \tilde{p}\), where \(\tilde{p} = \frac{{\left( {2k - 1} \right)\left( {\gamma + \alpha_{d} } \right)\alpha_{s} }}{{4\left[ {2t\left( {\theta + \gamma } \right) - \alpha_{s} \left( {\gamma + \alpha_{d} } \right)} \right]\left[ {\alpha_{s} \left( {\gamma + \alpha_{d} } \right) - t\left( {\theta + \gamma } \right)} \right]}} - \frac{{\alpha_{s} }}{2}\), we obtain \({\mathcal{H}} > 1,\) which implies that \(\pi_{1}^{{s{*}}}\) > \(\pi_{2}^{{s{*}}}\).

5.2 Proof of Proposition 2

  1. (1)

    According to expression of \(n_{b1}\) and \(n_{b2}\), there exist \(\hat{\gamma }\), when \(\gamma < \hat{\gamma }\), then \(n_{b1} < n_{b2}\); while when \(\gamma > \hat{\gamma }\), then \(n_{b1} > n_{b2}\).

  2. (2)

    From \(F_{1}^{M*} and F_{2}^{M*}\), it’s obvious that \(F_{1}^{M*} > F_{2}^{M*}\).

  3. (3)

    According to \(\pi_{1}^{M*}\) and \(\pi_{2}^{M*}\), we have

    $$ {\mathcal{B}} = \pi_{1}^{M*} - \pi_{2}^{M*} = \frac{{t\left[ {2k\left( {\theta p - \gamma } \right) + 2w - \theta } \right]\left[ {\theta k\alpha_{s} \left( {p - w} \right) + t\left( {w - \theta - k\gamma } \right)} \right] - A}}{{2k^{2} \theta^{2} \left[ {\alpha_{s} \left( {\gamma + \alpha_{b} } \right) - t\left( {\theta + \gamma } \right)} \right]t}}, $$

where \(A = 2k\left[ {\alpha_{s} \left( {\gamma + \alpha_{b} } \right) - t\left( {\theta + \gamma } \right)} \right]\left\{ {t\left[ {k\left( {\theta p - \theta - \gamma } \right) + w} \right] - \left[ {\theta \left( {w - p} \right) + \alpha_{b} + \gamma } \right]\left[ {k\left( {\theta p - \alpha_{b} - \gamma } \right) - w\left( {k\theta + 1} \right)} \right]} \right\}\).

Thus, there exist \(\hat{k}\), when \(k > \hat{k}\), we have \({\mathcal{B}} < 0\), which implies that when innovation capability is not so high, subsidy strategy dominates.

5.3 Proof of Proposition 3

(1) According to \(\pi_{1\left( 2 \right)}^{R*} - \pi_{2\left( 2 \right)}^{R*} = \frac{{\eta \left[ {\left( {\alpha_{s} + 2p} \right)\left( {3s^{2} - \left( {\gamma + \alpha_{b} } \right)s} \right) - k\left( {p + \alpha_{s} } \right)\left( {\gamma + \alpha_{b} } \right)} \right]}}{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}},\) which is concave function on s. Thus, there exist \(\hat{s}\), when \(s < \hat{s}\), we get \(\pi_{1\left( 2 \right)}^{R*} < \pi_{2\left( 2 \right)}^{R*}\); when \(s > \hat{s}\), we get \(\pi_{1\left( 2 \right)}^{R*} < \pi_{2\left( 2 \right)}^{R*}\).

(2) It’s obvious that \(e_{1\left( 1 \right)}^{R*} = e_{1\left( 2 \right)}^{R*} = \frac{1}{k}\).

(3) Since \(F_{1\left( 1 \right)}^{R*} - F_{2\left( 1 \right)}^{R*} = \frac{{\eta \left[ {s\left( {\alpha_{s} + 2p} \right) + k\left( {p + \alpha_{s} } \right)\left( {\gamma + \alpha_{b} } \right)} \right]}}{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}} > 0\), thus platform 1 charges higher access fee than platform 2. From \(F_{1\left( 2 \right)}^{R*} - F_{2\left( 2 \right)}^{R*} = \frac{{\eta \left[ {s\left( {\alpha_{s} + 2p} \right) + s^{2} \eta - \left( {k + 3} \right)} \right]}}{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}}\), there exist \(\tilde{s}\), when \(s < \tilde{s}\), we get \(\frac{{\eta \left[ {s\left( {\alpha_{s} + 2p} \right) + s^{2} \eta - \left( {k + 3} \right)} \right]}}{{\left[ {2\left( {1 - \eta } \right) - 2t + k\left( {\gamma + \alpha_{b} } \right)} \right]}} < 0.\)

5.4 Proof of Proposition 4

According to \(e_{i}^{S*} = e_{i}^{M*} = e_{i}^{R*} = \frac{1}{k}\), it’s easy to get this result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Deng, H. & Leong, K.G. Innovation investment and subsidy strategy in two-sided market. Inf Technol Manag 24, 337–351 (2023). https://doi.org/10.1007/s10799-021-00331-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-021-00331-x

Keywords

Navigation