Skip to main content

Advertisement

Log in

Alerting patients via health information system considering trust-dependent patient adherence

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

The internet of things has ushered in a world of possibilities in chronic disease management. Connected to the health information network, a health device can monitor and provide intervention recommendations to patients in real time. However, this new health information system may face the risk of patients not following the system’s recommendations depending on their perception of the system. In this paper, we consider patients’ trust in the system a key factor driving their adherence to the system’s recommendation and develop an analytical model to design the optimal alerting strategy in the context of asthma management. Our method acknowledges that patient’s trust may change over time based on their experience of using the system, which may influence their future adherence behavior. We derive a set of structural properties of our solution and demonstrate that our approach can significantly improve patients’ quality of life compared to the current practice of asthma management. Furthermore, we investigate various real-world scenarios, such as the case that patients may have different level of tolerance for receiving alerts. Based on our findings, valuable insights can be shared with patients, healthcare practitioners, and companies in the technology-enabled healthcare business sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agarwal R, Karahanna E (2000) Time flies when you’re having fun: cognitive absorption and beliefs about information technology usage. MIS Quarterly 24(4):665–694

  2. Agarwal R, Venkatesh V (2002) Assessing a firm’s web presence: a heuristic evaluation procedure for the measurement of usability. Inform Syst Res 13(2):168–186

  3. Ahsen ME, Ayvaci MUS, Raghunathan S (2019) When algorithmic predictions use human-generated data: A bias-aware classification algorithm for breast cancer diagnosis. Inform Syst Res 30(1):97–116

    Article  Google Scholar 

  4. American Lung Association (2014) Asthma treatment plan—adult form. http://www.pacnj.org/pdfs/atpfillableadult.pdf. Accessed 8 Mar 2019

  5. Asthma Society of Canada (2018) Asthma action plan—English. https://asthma.ca/wp-content/uploads/2018/06/AAP-FINAL.pdf. Accessed 17 Nov 2019

  6. Astrom K (1965) Optimal control of markov processes with incomplete state information. J Math Anal Appl 10(1):174–205. https://doi.org/10.1016/0022-247x(65)90154-x

    Article  Google Scholar 

  7. Ayer T, Alagoz O, Stout NK (2012) OR forum—a POMDP approach to personalize mammography screening decisions. Oper Res 60(5):1019–1034

    Article  Google Scholar 

  8. Ayer T, Alagoz O, Stout NK, Burnside ES (2016) Heterogeneity in women’s adherence and its role in optimal breast cancer screening policies. Manage Sci 62(5):1339–1362

  9. Bardhan I, Oh Jh, Zheng Z, Kirksey K (2015) Predictive analytics for readmission of patients with congestive heart failure. Inform Syst Res 26(1):19–39

    Article  Google Scholar 

  10. Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA, Pedersen SE (2004) Can guideline-defined asthma control be achieved? the gaining optimal asthma control study. Am J Res Crit Care Med 170(8):836–844

    Article  Google Scholar 

  11. Buntin MB, Burke MF, Hoaglin MC, Blumenthal D (2011) The benefits of health information technology: a review of the recent literature shows predominantly positive results. Health affairs 30(3):464–471

    Article  Google Scholar 

  12. Carpenter CJ (2010) A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Commun 25(8):661–669

    Article  Google Scholar 

  13. Cortez A, Hsii P, Mitchell E, Riehl V, Smith P (2018) Conceptualizing a data infrastructure for the capture, use, and sharing of patient-generated health data in care delivery and research through 2024 (white paper)

  14. Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly 319–340

  15. Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of computer technology: a comparison of two theoretical models. Manage Sci 35(8):982–1003

    Article  Google Scholar 

  16. Ferguson T, Birnbaum Z, Lukacs E (2014) Mathematical statistics: a decision theoretic approach. Academic Press, Probability and mathematical statistics

  17. Fichman R, Kohli R, Krishnan R, Kane G (2011) The role of information systems in healthcare: current research and future trends, lead article by the senior editors in. Inform Syst Res

  18. French MT, Mauskopf JA (1992) A quality-of-life method for estimating the value of avoided morbidity. Am J Public Health 82(11):1553–1555

    Article  Google Scholar 

  19. Gadkari AS, McHorney CA (2012) Unintentional non-adherence to chronic prescription medications: how unintentional is it really? BMC Health Serv Res 12(1):98

    Article  Google Scholar 

  20. Gefen D, Karahanna E, Straub DW (2003) Trust and tam in online shopping: an integrated model. MIS Quarterly 27(1):51–90

    Article  Google Scholar 

  21. Haughey J, Taylor K, Dohrmann M, Snyder G (2018) Medtech and the internet of medical things: how connected medical devices are transforming health care

  22. Hoff KA, Bashir M (2015) Trust in automation. Human Fact 57(3):407–434

    Article  Google Scholar 

  23. Huckvale K, Morrison C, Ouyang J, Ghaghda A, Car J (2015) The evolution of mobile apps for asthma: an updated systematic assessment of content and tools. BMC Med 13(1):58

    Article  Google Scholar 

  24. Kahn BE, Luce MF (2003) Understanding high-stakes consumer decisions: mammography adherence following false-alarm test results. Market Sci 22(3):393–410

    Article  Google Scholar 

  25. Karlin S (1968) Total positivity. Stanford University Press

  26. Karlin S, Rinott Y (1980) Classes of orderings of measures and related correlation inequalities—I. Multivariate totally positive distributions. J Multiv Anal 10(4):467–498

    Article  Google Scholar 

  27. Kim MS, Henderson KA, Van Sickle D (2016) Using connected devices to monitor inhaler use in the real world. Resp Drug Deliv 2016:37–44

    Google Scholar 

  28. Kolodner RM, Cohn SP, Friedman CP (2008) Health information technology: strategic initiatives, real progress: there is nothing “magical” about the strategic thinking behind health it adoption in the united states. Health Aff 27(Suppl1):w391–w395

  29. Lee YY, Lin JL (2009) The effects of trust in physician on self-efficacy, adherence and diabetes outcomes. Social Sci Med 68(6):1060–1068

    Article  Google Scholar 

  30. Lee JD, See KA (2004) Trust in automation: designing for appropriate reliance. Human Fact 46(1):50–80

    Article  Google Scholar 

  31. Leroy G, Chen H, Rindflesch TC (2014) Smart and connected health [guest editors’ introduction]. IEEE Intell Syst 29(3):2–5

  32. Lin YK, Chen H, Brown RA, Li SH, Yang HJ (2017) Healthcare predictive analytics for risk profiling in chronic care: a bayesian multitask learning approach. MIS Quarterly 41(2):473–495

    Article  Google Scholar 

  33. Lovejoy WS (1987) Some monotonicity results for partially observed markov decision processes. Oper Res 35(5):736–743

    Article  Google Scholar 

  34. Madhavan P, Phillips RR (2010) Effects of computer self-efficacy and system reliability on user interaction with decision support systems. Comput Human Behav 26(2):199–204. https://doi.org/10.1016/j.chb.2009.10.005

    Article  Google Scholar 

  35. Madhavan P, Wiegmann DA (2005) Cognitive anchoring on self-generated decisions reduces operator reliance on automated diagnostic aids. Human Fact 47(2):332–341. https://doi.org/10.1518/0018720054679489

    Article  Google Scholar 

  36. McKnight DH, Cummings LL, Chervany NL (1998) Initial trust formation in new organizational relationships. Acad Manage Rev 23(3):473–490

    Article  Google Scholar 

  37. McKnight DH, Choudhury V, Kacmar C (2002) The impact of initial consumer trust on intentions to transact with a web site: a trust building model. J Strat Inform Syst 11(3–4):297–323

    Article  Google Scholar 

  38. Merchant RK, Inamdar R, Quade RC (2016) Effectiveness of population health management using the propeller health asthma platform: a randomized clinical trial. J Allergy Clin Immunol Pract 4(3):455–463. https://doi.org/10.1016/j.jaip.2015.11.022

    Article  Google Scholar 

  39. Meyer G, Adomavicius G, Johnson PE, Elidrisi M, Rush WA, Sperl-Hillen JM, O’Connor PJ (2014) A machine learning approach to improving dynamic decision making. Inform Syst Res 25(2):239–263

  40. Milgrom H, Bender B, Ackerson L, Bowrya P, Smith B, Rand C (1996) Noncompliance and treatment failure in children with asthma. J Allergy Clin Immunol 98(6):1051–1057. https://doi.org/10.1016/s0091-6749(96)80190-4

    Article  Google Scholar 

  41. Mojtabai R, Olfson M (2003) Medication costs, adherence, and health outcomes among medicare beneficiaries. Health Aff 22(4):220–229

    Article  Google Scholar 

  42. Montague EN, Winchester WW III, Kleiner BM (2010) Trust in medical technology by patients and healthcare providers in obstetric work systems. Behav Inform Technol 29(5):541–554

    Article  Google Scholar 

  43. Ohnishi M, Kawai H, Mine H (1986) An optimal inspection and replacement policy under incomplete state information. Eur J Oper Res 27(1):117–128

    Article  Google Scholar 

  44. Patel M, Pilcher J, Reddel HK, Qi V, Mackey B, Tranquilino T, Shaw D, Black P, Weatherall M, Beasley R (2014) Predictors of severe exacerbations, poor asthma control, and beta-agonist overuse for patients with asthma. J Allergy Clin Immunol Pract 2(6):751-758.e1. https://doi.org/10.1016/j.jaip.2014.06.001

    Article  Google Scholar 

  45. Plottel CS (2010) 100 questions & answers about asthma. Jones & Bartlett Learning, Sudbury, MD

    Google Scholar 

  46. Postma DS (2007) Gender differences in asthma development and progression. Gender Med 4:S133–S146

    Article  Google Scholar 

  47. Rosenfield D (1976) Markovian deterioration with uncertain information. Oper Res 24(1):141–155

    Article  Google Scholar 

  48. Smallwood RD, Sondik EJ (1973) The optimal control of partially observable markov processes over a finite horizon. Oper Res 21(5):1071–1088. https://doi.org/10.1287/opre.21.5.1071

    Article  Google Scholar 

  49. Son J, Brennan PF, Zhou S (2016) Rescue inhaler usage prediction in smart asthma management systems using joint mixed effects logistic regression model. IIE Trans 48(4):333–346. https://doi.org/10.1080/0740817X.2015.1078014

    Article  Google Scholar 

  50. Son J, Brennan PF, Zhou S (2017) Correlated gamma-based hidden markov model for the smart asthma management based on rescue inhaler usage. Stat Med 36(10):1619–1637

    Article  Google Scholar 

  51. Son J, Brennan PF, Zhou S (2020) Data analytics framework for smart asthma management based on remote health information systems with bluetooth-enabled personal inhalers. MIS Quarterly 44(1):285–303

    Article  Google Scholar 

  52. van Sickle D, Maenner M, Barrett M, Marcus J (2013) Monitoring and improving compliance and asthma control: mapping inhaler use for feedback to patients, physicians and payers. Respir Drug Deliv Eur 1–12

  53. Vance A, Elie-Dit-Cosaque C, Straub DW (2008) Examining trust in information technology artifacts: the effects of system quality and culture. J Manage Inform Syst 24(4):73–100. https://doi.org/10.2753/mis0742-1222240403

    Article  Google Scholar 

  54. Venkatesh V, Goyal S (2010) Expectation disconfirmation and technology adoption: polynomial modeling and response surface analysis. MIS Quarterly 281–303

  55. White CC (1979) Optimal control-limit strategies for a partially observed replacement problem. Int J Syst Sci 10(3):321–332. https://doi.org/10.1080/00207727908941584

    Article  Google Scholar 

  56. World Health Organization (2003) Adherence to long-term therapies: evidence for action

Download references

Funding

The authors did not receive support from any organization for the submitted work. The industry collaborator provided helpful feedback and data without any financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbo Son.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Also, the authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proofs of analytical results

The following results are used throughout Appendix.

Lemma A.1

[25] For two probability mass functions \({\varvec{x}}\) and \({\varvec{x}}'\) with the same dimension \(\left| X\right|\), \({\varvec{x}}\le _s{\varvec{x}}'\) iff \(\sum _{i\in X}{{\varvec{x}}\left( i\right) f\left( i\right) }\ge \sum _{i\in X}{{\varvec{x}}'\left( i\right) f\left( i\right) }\) for every non-increasing f in \(i\in X\).

Lemma A.2

[47] For two probability mass functions \({\varvec{x}}\) and \({\varvec{x}}'\) with the same dimension \(\left| X\right|\), if \({\varvec{x}}\le _r{\varvec{x}}'\) then \({\varvec{x}}\le _s{\varvec{x}}'\).

Lemma A.3

[26] If \({\varvec{P}}\in {TP}_2\) and \({\varvec{x}}\le _r{\varvec{x}}'\) are two probability mass functions with the same dimension \(\left| X\right|\), then \({\varvec{x}}{\varvec{P}}\le _r{\varvec{x}}'{\varvec{P}}\) provided that \({\varvec{P}}\) have appropriate dimension.

Lemma A.4

[43] For \({\varvec{x}}\le _r{\varvec{x}}'\) in Definition 2, \({\varvec{x}}\le _r\left( 1-\lambda \right) {\varvec{x}}+\lambda {\varvec{x}}'\le _r{\varvec{x}}'\) for any arbitrary \(\lambda \in \left[ 0, 1\right]\).

Lemma A.5

[48] The optimality equation \(V^*_t\left( \varvec{\pi } \right)\) is piecewise linear convex hence can be written in terms of the maximum of a finite number of linear functions as:

$$\begin{aligned} V^*_t\left( \varvec{\pi } \right)= & {} \max _k \left[ \sum _{s\in S}{\pi (s)\alpha ^k_t(s)}\right] \\&\text { for some }\alpha _t=\left\{ {\alpha }^0_t,{\alpha }^1_t,{\alpha }^2_t,\dots \right\} , \end{aligned}$$

for all \(t\le t_E\) where the \(\left| S\right|\)-dimensional vector \(\alpha ^i_t=\left[ {\alpha }^i_t\left( s\right) \right]\) for \(s\in S\) called the \(\alpha\)-vectors.

Proof of analytical results 1 and 2

Analytical Results 1 and 2 are crucial because, based on them, we can claim a monotone optimal value function nonincreasing in \(\varvec{\pi }\in {{\varvec{\Pi }}}\). We first show Lemma 1 as follows:

Lemma 1

Suppose (C1)–(C3) hold, then the state transition probability matrix \({{\varvec{\Gamma }}}_t^{a,o}\) has \({TP}_2\) property for all \(a\in {\mathcal {A}}\) and \(o\in {\mathbf {O}}\) where (C1)–(C3) are

$$\begin{aligned} \text {(C1) }&v^{loss}_{HL}\ge v^{none}_{HL}\ge v^{gain}_{HL} \text { and } c^{loss}_{LL}=c^{none}_{LL}=c^{gain}_{LL},&\\ \text {(C2) }&v^{none}_{HH}\ge 1-v^{none}_{LL} \text { and } v^{loss}_{HL}\le v^{loss}_{LL},&\\ \text {(C3) }&c^0_{BB}\ge c^1_{BB}, c^0_{GG}=c^1_{GG}\text {, and } c^1_{GG}c^1_{BB}-c^1_{GB}c^1_{BG}\ge 0.&\end{aligned}$$

Proof of Lemma 1

First, we consider \(o=y\in \varvec{Y}\) for \(a\in {\mathcal {A}}\). In this case, the transition probability matrices are

$$\begin{aligned} {\varvec{{\Gamma }}}^{W,y}_t={\varvec{{\Gamma }}}^{A,y}_t=\left[ \begin{array}{ccc} p^{0,none}_{00}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{0j}} &{} p^{0,none}_{01}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{0j}} &{} p^{0,none}_{02}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{0j}} \\ p^{0,none}_{10}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{1j}} &{} p^{0,none}_{11}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{1j}} &{} p^{0,none}_{12}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{1j}} \\ p^{0,none}_{20}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{2j}} &{} p^{0,none}_{21}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{2j}} &{} p^{0,none}_{22}/\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{2j}} \end{array} \right] \ , \end{aligned}$$

where \({{\Gamma }}^{W,y}_{0j}\), \({{\Gamma }}^{W,y}_{1j}\), and \({{\Gamma }}^{W,y}_{2j}\) can be replaced with \({{\Gamma }}^{A,y}_{0j}\), \({{\Gamma }}^{A,y}_{1j}\), and \({{\Gamma }}^{A,y}_{2j}\).

Let us ignore the denominator and focus on the numerator for each entry in \({\varvec{{\Gamma }}}^{a,y}_t\). Note that \([p_{ij}^{x,z}]=c_{kl}^x\times v_{qu}^z\) denotes a matrix of transition probabilities from state i to state j for \(i,j\in \{0,1,2\}\), where \(x\in \{1,0\}\), \(z\in \{gain,loss,none\}\), \(k=G\) if \(i\in \{0,1\}\), \(k=B\) if \(i=2\), \(l=G\) if \(j\in \{0,1\}\), \(l=B\) if \(j=2\), \(q=H\) if \(i=0\), \(q=L\) if \(i\in \{1,2\}\), \(u=H\) if \(j=0\), and \(u=L\) if \(j\in \{1,2\}\). Then, we have

$$\begin{aligned} {\widetilde{\varvec{{\Gamma }}}}^{a,y}_t= & {} \left[ \begin{array}{c} {\widetilde{\varvec{{\Gamma }}}}^{a,y}_t\left( \cdot |0\right) \\ {\widetilde{\varvec{{\Gamma }}}}^{a,y}_t\left( \cdot |1\right) \\ {\widetilde{\varvec{{\Gamma }}}}^{a,y}_t\left( \cdot |2\right) \end{array} \right] =\left[ \begin{array}{ccc} p^{0,none}_{00} &{} p^{0,none}_{01} &{} p^{0,none}_{02} \\ p^{0,none}_{10} &{} p^{0,none}_{11} &{} p^{0,none}_{12} \\ p^{0,none}_{20} &{} p^{0,none}_{21} &{} p^{0,none}_{22} \end{array} \right] \\= & {} \left[ \begin{array}{ccc} c^0_{GG}v^{none}_{HH} &{} c^0_{GG}v^{none}_{HL} &{} c^0_{GB}v^{none}_{HL} \\ c^0_{GG}v^{none}_{LH} &{} c^0_{GG}v^{none}_{LL} &{} c^0_{GB}v^{none}_{LL} \\ c^0_{BG}v^{none}_{LH} &{} c^0_{BG}v^{none}_{LL} &{} c^0_{BB}v^{none}_{LL} \end{array} \right] . \end{aligned}$$

The first, second, and third rows have the following relationship:

$$\begin{aligned}&\frac{c^0_{GG}v^{none}_{HH}}{c^0_{GG}v^{none}_{LH}}\ge \frac{c^0_{GG}v^{none}_{HL}}{c^0_{GG}v^{none}_{LL}}=\frac{c^0_{GB}v^{none}_{HL}}{c^0_{GB}v^{none}_{LL}}\\&\quad \mathrm { and }\frac{c^0_{GG}v^{none}_{LH}}{c^0_{BG}v^{none}_{LH}}=\frac{c^0_{GG}v^{none}_{LL}}{c^0_{BG}v^{none}_{LL}}\ge \frac{c^0_{GB}v^{none}_{LL}}{c^0_{BB}v^{none}_{LL}}{\ ,}\end{aligned}$$

where the first inequality holds because of (C2) and the second inequality holds due to (C3). It can be shown that \(c^0_{GB}v^{none}_{HH}=1-\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{0j}}\), \(c^0_{GB}v^{none}_{LH}=1-\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{1j}}\), and \(c^0_{BB}v^{none}_{LH}=1-\sum ^2_{j=0}{{{\Gamma }}^{W,y}_{2j}}\). Because both \(\left( 1-c^0_{GB}v^{none}_{LH}\right) /\left( 1-c^0_{GB}v^{none}_{HH}\right)\) and \(\left( 1-c^0_{BB}v^{none}_{LH}\right) /\left( 1-c^0_{GB}v^{none}_{LH}\right)\) are non-negative, we obtain

$$\begin{aligned} \frac{c^0_{GG}v^{none}_{HH}\left( 1-c^0_{GB}v^{none}_{LH}\right) }{c^0_{GG}v^{none}_{LH}\left( 1-c^0_{GB}v^{none}_{HH}\right) }\ge&\frac{c^0_{GG}v^{none}_{HL}\left( 1-c^0_{GB}v^{none}_{LH}\right) }{c^0_{GG}v^{none}_{LL}\left( 1-c^0_{GB}v^{none}_{HH}\right) }\\ =&\frac{c^0_{GB}v^{none}_{HL}\left( 1-c^0_{GB}v^{none}_{LH}\right) }{c^0_{GB}v^{none}_{LL}\left( 1-c^0_{GB}v^{none}_{HH}\right) } \ \mathrm { and } \\ \frac{c^0_{GG}v^{none}_{LH}\left( 1-c^0_{BB}v^{none}_{LH}\right) }{c^0_{BG}v^{none}_{LH}\left( 1-c^0_{GB}v^{none}_{LH}\right) }=&\frac{c^0_{GG}v^{none}_{LL}\left( 1-c^0_{BB}v^{none}_{LH}\right) }{c^0_{BG}v^{none}_{LL}\left( 1-c^0_{GB}v^{none}_{LH}\right) }\\ \ge&\frac{c^0_{GB}v^{none}_{LL}\left( 1-c^0_{BB}v^{none}_{LH}\right) }{c^0_{BB}v^{none}_{LL}\left( 1-c^0_{GB}v^{none}_{LH}\right) }, \end{aligned}$$

which directly implies \({\varvec{{\Gamma }}}^{a,y}_t\left( \cdot |0\right) {\le }_r{\varvec{{\Gamma }}}^{a,y}_t\left( \cdot |1\right)\) and \({\varvec{{\Gamma }}}^{a,y}_t\left( \cdot |1\right) {\le }_r{\varvec{{\Gamma }}}^{a,y}_t\left( \cdot |2\right)\) from Definition 2. Thus, from Definition 3, \({\varvec{{\Gamma }}}^{a,y}_t\in {TP}_2\) for \(a\in {\mathcal {A}}\) and \(t\le t_E\).

Now, for \(o\mathrm {=}{\mathrm {s}}^H_t\) and \(a\mathrm {=}W\), the transition matrix without the normalizing denominators is

$$\begin{aligned} {\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t= & {} \left[ \begin{array}{c} {\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t\left( \cdot |0\right) \\ {\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t\left( \cdot |1\right) \\ {\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t\left( \cdot |2\right) \end{array} \right] =\left[ \begin{array}{ccc} p^{1,gain}_{00} &{} p^{1,gain}_{01} &{} p^{1,gain}_{02} \\ p^{1,gain}_{10} &{} p^{1,gain}_{11} &{} p^{1,gain}_{12} \\ p^{1,loss}_{20} &{} p^{1,loss}_{21} &{} p^{1,loss}_{22} \end{array} \right] \\= & {} \left[ \begin{array}{ccc} c^1_{GG}v^{gain}_{HH} &{} c^1_{GG}v^{gain}_{HL} &{} c^1_{GB}v^{gain}_{HL} \\ c^1_{GG}v^{gain}_{LH} &{} c^1_{GG}v^{gain}_{LL} &{} c^1_{GB}v^{gain}_{LL} \\ c^1_{BG}v^{loss}_{LH} &{} c^1_{BG}v^{loss}_{LL} &{} c^1_{BB}v^{loss}_{LL} \end{array} \right] {\ ,}\end{aligned}$$

and we can derive following relationships

$$\begin{aligned}&\frac{c^1_{GG}v^{gain}_{HH}}{c^1_{GG}v^{gain}_{LH}}\ge \frac{c^1_{GG}v^{gain}_{HL}}{c^1_{GG}v^{gain}_{LL}}=\frac{c^1_{GB}v^{gain}_{HL}}{c^1_{GB}v^{gain}_{LL}}\\&\quad \mathrm { and }\frac{c^1_{GG}v^{gain}_{LH}}{c^1_{BG}v^{loss}_{LH}}=\frac{c^1_{GG}v^{gain}_{LL}}{c^1_{BG}v^{loss}_{LL}}\ge \frac{c^1_{GB}v^{gain}_{LL}}{c^1_{BB}v^{loss}_{LL}}{\ ,}\end{aligned}$$

where the first inequality holds because of (C1) and (C2), the second inequality holds due to (C3), and the second equality is based on (C1). Therefore, \({\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t\left( \cdot |0\right) {\le }_r{\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t\left( \cdot |1\right) {\le }_r{\widetilde{\varvec{{\Gamma }}}}^{W,s^C_t}_t\left( \cdot |2\right)\) which implies that \({\varvec{{\Gamma }}}^{W,s^C_t}_t\in {TP}_2\) from Definition 3. Similarly, for \(o\mathrm {=}{\mathrm {s}}^H_t\) and \(a\mathrm {=}A\), we have

$$\begin{aligned} {\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t= & {} \left[ \begin{array}{c} {\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t\left( \cdot |0\right) \\ {\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t\left( \cdot |1\right) \\ {\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t\left( \cdot |2\right) \end{array} \right] =\left[ \begin{array}{ccc} p^{1,loss}_{00} &{} p^{1,loss}_{01} &{} p^{1,loss}_{02} \\ p^{1,loss}_{10} &{} p^{1,loss}_{11} &{} p^{1,loss}_{12} \\ p^{1,gain}_{20} &{} p^{1,gain}_{21} &{} p^{1,gain}_{22} \end{array} \right] \\= & {} \left[ \begin{array}{ccc} c^1_{GG}v^{loss}_{HH} &{} c^1_{GG}v^{loss}_{HL} &{} c^1_{GB}v^{loss}_{HL} \\ c^1_{GG}v^{loss}_{LH} &{} c^1_{GG}v^{loss}_{LL} &{} c^1_{GB}v^{loss}_{LL} \\ c^1_{BG}v^{gain}_{LH} &{} c^1_{BG}v^{gain}_{LL} &{} c^1_{BB}v^{gain}_{LL} \end{array} \right] {\ ,} \end{aligned}$$

and we derive following relationships

$$\begin{aligned}&\frac{c^1_{GG}v^{loss}_{HH}}{c^1_{GG}v^{loss}_{LH}}\ge \frac{c^1_{GG}v^{loss}_{HL}}{c^1_{GG}v^{loss}_{LL}}=\frac{c^1_{GB}v^{loss}_{HL}}{c^1_{GB}v^{loss}_{LL}}\\&\quad \mathrm { and }\frac{c^1_{GG}v^{loss}_{LH}}{c^1_{BG}v^{gain}_{LH}}=\frac{c^1_{GG}v^{loss}_{LL}}{c^1_{BG}v^{gain}_{LL}}\ge \frac{c^1_{GB}v^{loss}_{LL}}{c^1_{BB}v^{gain}_{LL}}{\ ,} \end{aligned}$$

where the first inequality holds because (C2) and the second inequality holds due to (C3). The second equality is based on (C1). Therefore, \({\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t\left( \cdot |0\right) {\le }_r{\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t\left( \cdot |1\right) {\le }_r{\widetilde{\varvec{{\Gamma }}}}^{A,s^C_t}_t\left( \cdot |2\right)\) which implies that \({\varvec{{\Gamma }}}^{A,s^C_t}_t\in {TP}_2\) from Definition 3. Based on all results above, we see that \({\varvec{{\Gamma }}}^{a,o}_t\in {TP}_2\) for \(a\in {\mathcal {A}}\), \(o\in \varvec{O}\), and \(t\le t_E\). \(\square\)

Lemma 1 shows that the state transition probability matrix \({{\varvec{\Gamma }}}_t^{a,o}\) has the \(TP_2\) property. We can also show that the \(TP_2\) property can be retained after simplifying the state transition probability matrix to \({{\varvec{\Gamma }}}_t^{a}\) as follows:

Proposition 1

Suppose (C1)–(C3) hold, then the \({{\varvec{\Gamma }}}_t^{a,o}\in {TP}_2\) for all \(a\in {\mathcal {A}}\) and \(t\le t_E\).

Proof of Proposition 1

To recall, the overall transition probability for \(a_t=W\) is expressed as

$$\begin{aligned} {\varvec{{\Gamma }}}^W_t=\left[ \begin{array}{ccc} \left( 1-q^{0,W}_t\right) p^{0,none}_{00}+q^{0,W}_tp^{1,gain}_{00} &{} \left( 1-q^{0,W}_t\right) p^{0,none}_{01}+q^{0,W}_tp^{1,gain}_{01} &{} \left( 1-q^{0,W}_t\right) p^{0,none}_{02}+q^{0,W}_tp^{1,gain}_{02} \\ \left( 1-q^{1,W}_t\right) p^{0,none}_{10}+q^{1,W}_tp^{1,gain}_{10} &{} \left( 1-q^{1,W}_t\right) p^{0,none}_{11}+q^{1,W}_tp^{1,gain}_{11} &{} \left( 1-q^{1,W}_t\right) p^{0,none}_{12}+q^{1,W}_tp^{1,gain}_{12} \\ \left( 1-q^{2,W}_t\right) p^{0,none}_{20}+q^{2,W}_tp^{1,loss}_{20} &{} \left( 1-q^{2,W}_t\right) p^{0,none}_{21}+q^{2,W}_tp^{1,loss}_{21} &{} \left( 1-q^{2,W}_t\right) p^{0,none}_{22}+q^{2,W}_tp^{1,loss}_{22} \end{array} \right] , \end{aligned}$$

Now, let \(\varvec{p}^{x,z}_{i\cdot }\) denote the a vector of transition probabilities from state i to \(j\in \left\{ 0,1,2\right\}\) for any given \(x\in \left\{ 1,0\right\}\) and \(z\in \left\{ none,gain,loss\right\}\). Then, from Definition 2, we obtain

$$\begin{aligned} \frac{c^0_{GG}v^{none}_{HH}}{c^1_{GG}v^{gain}_{HH}} \le \frac{c^0_{GG}v^{none}_{HL}}{c^1_{GG}v^{gain}_{HL}}=\frac{c^0_{GB}v^{none}_{HL}}{c^1_{GG}v^{gain}_{HL}}\ \Leftrightarrow \ \varvec{p}^{1,gain}_{0\cdot }{\varvec{\le }}_r \varvec{p}^{0,none}_{0\cdot }\ , \end{aligned}$$

where the inequality holds because of condition (C1) and the equality holds due to condition (C3). Similarly, we show

$$\begin{aligned} \frac{c^0_{BG}v^{none}_{LH}}{c^1_{BG}v^{loss}_{LH}}=\frac{c^0_{BG}v^{none}_{LL}}{c^1_{BG}v^{loss}_{LL}}\le \frac{c^0_{BB}v^{none}_{LL}}{c^1_{BB}v^{loss}_{LL}}\ \Leftrightarrow \ \varvec{p}^{1,loss}_{2\cdot }{\varvec{\le }}_r\varvec{p}^{0,none}_{2\cdot }\ , \end{aligned}$$

where the equality and inequality hold due to conditions (C1) and (C3), respectively. Furthermore, from the same conditions (C1) and (C3), it is easy to show that \(\varvec{p}^{1,gain}_{1\cdot }\varvec{=}\varvec{p}^{0,none}_{1\cdot }\) because \(c^0_{GG}=c^1_{GG}\), \(c^0_{GB}=c^1_{GG}\), and \(v^{none}_{LL}=v^{gain}_{LH}\).

Let \({\varvec{{\varGamma }}}^W_t\left( \cdot |i\right)\) denote a \(\left| S\right|\)-dimensional vector of state transition probabilities from state i to \(j\in \left\{ 0,1,2\right\}\). Then, from Lemma A.4, we get

$$\begin{aligned}\left\{ \ \ \ \ \begin{array}{l} \varvec{p}^{1,gain}_{0\cdot }{\le }_r{\varvec{{\varGamma }}}^W_t\left( 0|\cdot \right) {\le }_r\varvec{p}^{0,none}_{0\cdot }\ \\ \varvec{p}^{0,none}_{1\cdot }={\varvec{{\varGamma }}}^W_t\left( 1|\cdot \right) =\varvec{p}^{1,gain}_{1\cdot }\ \ \\ \varvec{p}^{1,loss}_{2\cdot }{\le }_r{\varvec{{\varGamma }}}^W_t\left( 2|\cdot \right) {\le }_r\varvec{p}^{0,none}_{2\cdot }\ \end{array} \right. \ .\end{aligned}$$

Now we show

$$\begin{aligned}\left\{ \ \ \ \ \begin{array}{l} \frac{c^0_{GG}v^{none}_{HH}}{c^1_{GG}v^{none}_{LH}}\ge \frac{c^0_{GG}v^{none}_{HL}}{c^1_{GG}v^{none}_{LL}}=\frac{c^0_{GB}v^{none}_{HL}}{c^1_{GG}v^{none}_{LL}}\ \Leftrightarrow \ \varvec{p}^{0,none}_{0\cdot }{\le }_r\varvec{p}^{0,none}_{1\cdot } \\ \frac{c^1_{GG}v^{gain}_{LH}}{c^1_{BG}v^{loss}_{LH}}=\frac{c^1_{GG}v^{gain}_{LL}}{c^1_{BG}v^{loss}_{LL}}\ge \frac{c^1_{GB}v^{gain}_{LL}}{c^1_{BB}v^{loss}_{LL}}\ \Leftrightarrow \ \varvec{p}^{1,gain}_{1\cdot }{\le }_r\varvec{p}^{1,loss}_{2\cdot } \end{array} \right. \ ,\end{aligned}$$

where the inequality in the first expression holds because of condition (C2) and the rest is due to condition (C3). Based on this result, we obtain following relationship:

$$\begin{aligned}&\varvec{p}^{1,gain}_{0\cdot }{\le }_r{\varvec{{\varGamma }}}^W_t\left( \cdot |0\right) {\le }_r\varvec{p}^{0,none}_{0\cdot }{\le }_r\varvec{p}^{0,none}_{1\cdot }={\varvec{{\varGamma }}}^W_t\left( \cdot |1\right) \\&\quad =\varvec{p}^{1,gain}_{1\cdot }{\le }_r\varvec{p}^{1,loss}_{2\cdot }{\le }_r{\varvec{{\varGamma }}}^W_t\left( \cdot |2\right) {\le }_r\varvec{p}^{0,none}_{2\cdot }\\&\quad \Longleftrightarrow \ {\varvec{{\varGamma }}}^W_t\left( \cdot |0\right) {\le }_r{\varvec{{\varGamma }}}^W_t\left( \cdot |1\right) {\le }_r{\varvec{{\varGamma }}}^W_t\left( \cdot |2\right) \ .\end{aligned}$$

Therefore, based on Definition 3, \({\varvec{{\varGamma }}}^W_t\in {TP}_2\).

For \(a_t=A\), we follow the identical procedures and get following relationships:

$$\begin{aligned}\left\{ \ \ \ \ \begin{array}{l} \frac{c^0_{GG}v^{none}_{HH}}{c^1_{GG}v^{loss}_{HH}}\ge \frac{c^0_{GG}v^{none}_{HL}}{c^1_{GG}v^{loss}_{HH}}=\frac{c^0_{GB}v^{none}_{HL}}{c^1_{GB}v^{loss}_{HL}}\ \Leftrightarrow \ \varvec{p}^{0,none}_{0\cdot }{\varvec{\le }}_r\varvec{p}^{1,loss}_{0\cdot }\ \\ \frac{c^0_{GG}v^{none}_{LH}}{c^1_{GG}v^{loss}_{LH}}=\frac{c^0_{GG}v^{none}_{LL}}{c^1_{GG}v^{loss}_{LL}}=\frac{c^0_{GB}v^{none}_{LL}}{c^1_{GB}v^{loss}_{LL}}\ \Leftrightarrow \ \varvec{p}^{0,none}_{1\cdot }=\varvec{p}^{1,loss}_{1\cdot }\ \ \\ \frac{c^0_{BG}v^{none}_{LH}}{c^1_{BG}v^{gain}_{LH}}\le \frac{c^0_{BG}v^{none}_{LL}}{c^1_{BG}v^{gain}_{LL}}=\frac{c^0_{BB}v^{none}_{LL}}{c^1_{BB}v^{gain}_{LL}}\ \Leftrightarrow \ \varvec{p}^{1,gain}_{2\cdot }{\varvec{\le }}_r\varvec{p}^{0,none}_{2\cdot }\ \end{array} \right. \ ,\end{aligned}$$

where (C1) and (C3) were used and, using (C2) and (C3), we further obtain

$$\begin{aligned}\left\{ \ \ \ \ \begin{array}{l} \frac{c^1_{GG}v^{loss}_{HH}}{c^1_{GG}v^{loss}_{LH}}\ge \frac{c^1_{GG}v^{loss}_{HL}}{c^1_{GG}v^{loss}_{LL}}=\frac{c^1_{GB}v^{loss}_{HL}}{c^1_{GB}v^{loss}_{LL}}\ \Leftrightarrow \ \varvec{p}^{1,loss}_{0\cdot }{\varvec{\le }}_r\varvec{p}^{1,loss}_{1\cdot } \\ \frac{c^1_{GG}v^{loss}_{LH}}{c^1_{BG}v^{gain}_{LH}}=\frac{c^1_{GG}v^{loss}_{LL}}{c^1_{BG}v^{gain}_{LL}}\ge \frac{c^1_{GB}v^{loss}_{LL}}{c^1_{BB}v^{gain}_{LL}}\ \Leftrightarrow \ \varvec{p}^{1,loss}_{1\cdot }{\varvec{\le }}_r\varvec{p}^{1,gain}_{2\cdot } \end{array} \right. \ . \end{aligned}$$

Now, from Lemma A.4, we show

$$\begin{aligned}&\varvec{p}^{0,none}_{0\cdot }{\varvec{\le }}_r{\varvec{{\varGamma }}}^A_t\left( \cdot |0\right) {\varvec{\le }}_r\varvec{p}^{1,loss}_{0\cdot }{\varvec{\le }}_r\varvec{p}^{1,loss}_{1\cdot }\\&\quad ={\varvec{{\varGamma }}}^A_t\left( \cdot |1\right) {\varvec{\le }}_r\varvec{p}^{1,gain}_{2\cdot }{\varvec{\le }}_r{\varvec{{\varGamma }}}^A_t\left( \cdot |2\right) {\varvec{\le }}_r\varvec{p}^{0,none}_{2\cdot }\\&\quad \Longleftrightarrow \ {\varvec{{\varGamma }}}^A_t\left( \cdot |0\right) {\varvec{\le }}_r{\varvec{{\varGamma }}}^A_t\left( \cdot |1\right) {\varvec{\le }}_r{\varvec{{\varGamma }}}^A_t\left( \cdot |2\right) \ .\end{aligned}$$

Therefore, based on Definition 3, \({\varvec{{\varGamma }}}^A_t\in {TP}_2\) hence \({\varvec{{\varGamma }}}^a_t\in {TP}_2\) for all \(a\in {\mathcal {A}}\) and \(t\le t_E\). \(\square\)

Furthermore, from Lemma 1, we get

Proposition 2

For any two beliefs \(\varvec{\pi }\),\(\varvec{\pi }^{'}\in {{\varvec{\Pi }}}\) such that \(\varvec{\pi }\le _r\varvec{\pi }^{'}\), suppose (C1)–(C3) hold, then \(\varvec{\tau }_{\varvec{\pi }}^{a,o} \le _r {\varvec{\tau }^{a,o}_{\varvec{\pi }^{'}}}\) for any \(a\in {\mathcal {A}}\) and \(o\in {\mathbf {O}}\).

Proof of Proposition 2

Let \({\varvec{{\Psi }}}_t\left( o\right)\) denote a 3-by-3 matrix defined as

$$\begin{aligned}{\varvec{{\Psi }}}_t\left( o\right) =\left[ \begin{array}{ccc} {{\Lambda }}^{0,a}_t\left( o\right) &{} {{\Lambda }}^{0,a}_t\left( o\right) &{} {{\Lambda }}^{0,a}_t\left( o\right) \\ {{\Lambda }}^{1,a}_t\left( o\right) &{} {{\Lambda }}^{1,a}_t\left( o\right) &{} {{\Lambda }}^{1,a}_t\left( o\right) \\ {{\Lambda }}^{2,a}_t\left( o\right) &{} {{\Lambda }}^{2,a}_t\left( o\right) &{} {{\Lambda }}^{2,a}_t\left( o\right) \end{array} \right] \ ,\end{aligned}$$

which has three identical columns for \(o\in \varvec{O}\) and \(a\in {\mathcal {A}}\). Now, based on Definition 3, it is easy to show that the following matrix has \({TP}_2\) property

$$\begin{aligned}{\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t=\left[ \begin{array}{ccc} {{\Lambda }}^{0,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 0|0\right) &{} {{\Lambda }}^{0,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 1|0\right) &{} {{\Lambda }}^{0,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 2|0\right) \\ {{\Lambda }}^{1,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 0|1\right) &{} {{\Lambda }}^{1,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 1|1\right) &{} {{\Lambda }}^{1,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 2|1\right) \\ {{\Lambda }}^{2,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 0|2\right) &{} {{\Lambda }}^{2,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 1|2\right) &{} {{\Lambda }}^{2,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 2|2\right) \end{array} \right] \ , \end{aligned}$$

where the operator \(\circ\) indicates element-wise multiplication (Hadamard product). For each belief, we get

$$\begin{aligned}\varvec{\pi }\left( {\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\right) \varvec{=}{\left[ \sum _{{\varvec{s}}\in S}{\pi \left( s'\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( s'|s\right) }\right] }_{s'\in \varvec{S}}\varvec{\ ,}\end{aligned}$$

and

$$\begin{aligned}\varvec{\pi }\varvec{'}\left( {\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\right) \varvec{=}{\left[ \sum _{{\varvec{s}}\in S}{\pi '\left( s'\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( s'|s\right) }\right] }_{s'\in \varvec{S}}\varvec{\ .}\end{aligned}$$

From Lemma A.3, \(\varvec{\pi }\left( {\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\right) {\varvec{\le }}_r\varvec{\pi }\varvec{'}\left( {\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\right)\) holds because \({\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\in {TP}_2\). Based on Definition 3, we rewrite the expression as

$$\begin{aligned}&\varvec{\pi }\left( {\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\right) {\varvec{\le }}_r{\varvec{\pi }'}\left( {\varvec{{\Psi }}}_t\left( o\right) \circ {\varvec{{\Gamma }}}^{a,o}_t\right) \nonumber \\&\quad \Longrightarrow \ \frac{\sum _{{\varvec{s}}\in S}{\pi \left( 0\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 0|s\right) }}{\sum _{{\varvec{s}}\in S}{\pi '\left( 0\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 0|s\right) }}\\&\quad \ge \frac{\sum _{{\varvec{s}}\in S}{\pi \left( 1\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 1|s\right) }}{\sum _{{\varvec{s}}\in S}{\pi '\left( 1\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 1|s\right) }}\\&\quad \ge \frac{\sum _{{\varvec{s}}\in S}{\pi \left( 2\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 2|s\right) }}{\sum _{{\varvec{s}}\in S}{\pi '\left( 2\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( 2|s\right) }}. \end{aligned}$$

From the definition of our belief updating function, we get

$$\begin{aligned}&\frac{{\tau }^{a,o}_{\pi }\left( 0\right) \sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}{{\tau }^{a,o}_{\pi '}\left( 0\right) \sum _{s\in S}{\pi '\left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}\\&\quad \ge \frac{{\tau }^{a,o}_{\pi }\left( 1\right) \sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}{{\tau }^{a,o}_{\pi '}\left( 1\right) \sum _{s\in S}{\pi '\left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}\\&\quad \ge \frac{{\tau }^{a,o}_{\pi }\left( 2\right) \sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}{{\tau }^{a,o}_{\pi '}\left( 2\right) \sum _{s\in S}{\pi '\left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}\ .\end{aligned}$$

Multiplying a non-negative quantity \(\sum _{s\in S}{\pi '\left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }/\sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }\) yields

$$\begin{aligned} \frac{\tau _\pi ^{a,o}(0)}{\tau _{\pi '}^{a,o}(0)}\ge \frac{\tau _{\pi }^{a,o} (1)}{\tau _{\pi '}^{a,o} (1)}\ge \frac{\tau _\pi ^{a,o} (2)}{\tau _{\pi '}^{a,o} (2)}, \end{aligned}$$

which implies \({\varvec{\tau }}^{a,o}_{\pi }{\le }_r{\varvec{\tau }}^{a,o}_{\pi '}\) for any \(a\in {\mathcal {A}}\) and \(o\in \varvec{O}\) based on Definition 3. \(\square\)

The Analytical Result 1 is based on Lemma 1 and Proposition 1, and the Analytical Result 2 is equivalent to Proposition 2.

Proof of analytical result 3

The Analytical Result 3 shows that our optimal value function is nonincreasing in \(\varvec{\pi }\in {{\varvec{\Pi }}}\) without assuming an unrealistic \(TP_2\) assumption on the observation probability matrix. First, we give Lemma 2 as follows:

Lemma 2

For \(y_t\in \varvec{Y}\) and \(s^C_t\in \{G,B\}\), let \(\varvec{\xi }_{s^C_t}=\left[ \xi _{s^C_t}(y_t)\right]\) be a |Y|-dimensional probability vector where \(\xi _{s^C_t}(y_t)=P(y_t|s^C_t)\) and define \(\gamma =\xi _G(y^M)/\xi _B(y^M)\) where \(0<\gamma \le 1\). Suppose following conditions are satisfied for all \(a\in {\mathcal {A}}\), then the observation probability matrix \(\varvec{\varLambda }^a_t={\left[ {{\Lambda }}^{s,a}_t(o)\right] }_{s\in \varvec{S},o\in \varvec{O}}\in {TP}_2\) for all \(a\in {\mathcal {A}}\) and \(t\le t_E\).

$$\begin{aligned} \text {(C4) }&\varvec{\xi }_G {\le }_r {\varvec{\xi }}_B,&\\ \text {(C5) }&q^{0,a}_t\le q^{1,a}_t\le \delta \left( a\right) =q^{1,a}_t/\left\{ \gamma \left( 1-q^{1,a}_t\right) +q^{1,a}_t\right\} \le q^{2,a}_t.&\end{aligned}$$

Proof of Lemma 2

We give proof only for \(a_t=W\) because the proof for \(a_t=A\) is identical. For \(a_t=W\), the observation matrix for \(o_t\in \varvec{O}=\left\{ 0,\ 1,\ 2^+,s^C_t\right\}\) is defined as

$$\begin{aligned} {\varvec{{\Lambda }}}^W_t=\left[ \begin{array}{c} {\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }0\right) \\ {\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }1\right) \\ {\varvec{{\Lambda }}}^W_t\left( \cdot \left| \right. 2\right) \end{array} \right] =\left[ \begin{array}{cc} \begin{array}{cc} \left( 1-q^{0,W}_t\right) {\xi }_G\left( 0\right) &{} \left( 1-q^{0,W}_t\right) {\xi }_G\left( 1\right) \\ \left( 1-q^{1,W}_t\right) {\xi }_G\left( 0\right) &{} \left( 1-q^{1,W}_t\right) {\xi }_G\left( 1\right) \\ \left( 1-q^{2,W}_t\right) {\xi }_B\left( 0\right) &{} \left( 1-q^{2,W}_t\right) {\xi }_B\left( 1\right) \end{array} &{} \begin{array}{cc} \left( 1-q^{0,W}_t\right) {\xi }_G\left( 2^+\right) &{} q^{0,W}_t \\ \left( 1-q^{1,W}_t\right) {\xi }_G\left( 2^+\right) &{} q^{1,W}_t \\ \left( 1-q^{2,W}_t\right) {\xi }_B\left( 2^+\right) &{} q^{2,W}_t \end{array} \end{array} \right] \ ,\end{aligned}$$

because \({{\Lambda }}^{s,a}_t\left( o=s^C_t\right) =q^{s,a}_t\) and \({{\Lambda }}^{s,a}_t\left( o=y_t\right) =\left( 1-q^{s,a}_t\right) \times P\left( y_t|s^C_t\right)\) for \(y_t\in \varvec{Y}\). Each row in \({\varvec{{\Lambda }}}^W_t\), \(\varvec{{\Lambda }}^W_t(\cdot |i)\), denotes an observation probability vector with dimension of \(\left| \varvec{O}\right|\) for state i.

For the first and second rows in \({\varvec{{\Lambda }}}^W_t\), we see

$$\begin{aligned} \frac{\left( 1-q^{0,W}_t\right) {\xi }_G\left( 0\right) }{\left( 1-q^{1,W}_t\right) {\xi }_G\left( 0\right) }= & {} \frac{\left( 1-q^{0,W}_t\right) {\xi }_G\left( 1\right) }{\left( 1-q^{1,W}_t\right) {\xi }_G\left( 1\right) }\\= & {} \frac{\left( 1-q^{0,W}_t\right) {\xi }_G\left( 2^+\right) }{\left( 1-q^{1,W}_t\right) {\xi }_G\left( 2^+\right) }\ge \frac{q^{0,W}_t}{q^{1,W}_t}\ ,\end{aligned}$$

where the last inequality holds because of (C2). Thus, from Definition 2, \({\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }0\right) {\varvec{\le }}_r{\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }1\right)\).

Similarly, for the second and third rows in \({\varvec{{\Lambda }}}^W_t\), we get

$$\begin{aligned} \frac{\left( 1-q^{1,W}_t\right) {\xi }_G\left( 0\right) }{\left( 1-q^{2,W}_t\right) {\xi }_B\left( 0\right) }\ge & {} \frac{\left( 1-q^{1,W}_t\right) {\xi }_G\left( 1\right) }{\left( 1-q^{2,W}_t\right) {\xi }_B\left( 1\right) }\\\ge & {} \frac{\left( 1-q^{1,W}_t\right) {\xi }_G\left( 2^+\right) }{\left( 1-q^{2,W}_t\right) {\xi }_B\left( 2^+\right) }\ge \frac{q^{1,W}_t}{q^{2,W}_t}\ ,\end{aligned}$$

where the last inequality holds due to (C2).

From (C1), \({\varvec{\xi }}_G{\varvec{\le }}_r{\varvec{\xi }}_B\) which implies \({\xi }_G\left( 0\right) /{\xi }_B\left( 0\right)\) \(\ge\) \({\xi }_G\left( 1\right) /{\xi }_B\left( 1\right)\) \(\ge\) \({\xi }_G\left( 2\right) /{\xi }_B\left( 2\right)\). Because \(\left( 1-q^{1,W}_t\right) /\left( 1-q^{2,W}_t\right)\) is always positive, the inequalities do not change after multiplication. Therefore, the first and second inequalities hold. Now, based on Definition 2, \({\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }1\right) {\varvec{\le }}_r{\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }2\right)\). Because \({\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }0\right) {\varvec{\le }}_r{\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }1\right)\) and \({\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }1\right) {\varvec{\le }}_r{\varvec{{\Lambda }}}^W_t\left( \cdot {\left| \right. }2\right)\), from Definition 3, \({\varvec{{\Lambda }}}^W_t={\left[ {{\Lambda }}^{s,W}_t\left( o\right) \right] }_{s\in \varvec{S},o\in \varvec{O}}\in {TP}_2\) for \(t\le t_E\). Following the same procedure for \(a=A\), it is easy to show that \({\varvec{{\Lambda }}}^A_t={\left[ {{\Lambda }}^{s,A}_t\left( o\right) \right] }_{s\in \varvec{S},o\in \varvec{O}}\in {TP}_2\) for \(t\le t_E\). \(\square\)

We stated that (C5) is not a viable assumption in the SAM application. Therefore, we need to find a way to ensure monotonic nonincreasing value function in \(\varvec{\pi }\in {{\varvec{\Pi }}}\) without depending on Lemma 2. To do so, we give Lemma 3 and Proposition 3 as below:

Lemma 3

The value function for \(a\in {\mathcal {A}}\) is \(V^a_t(\varvec{\pi })=\sum _{s\in \varvec{S}}{\pi (s)\left[ r_t(s,a)+\sum _{s'\in S}{\varGamma ^a_t(s'|s){\widetilde{\alpha }}^{\kappa (\varvec{\pi },a)}_{t+1}(s')}\right] }\) where \(\kappa (\varvec{\pi },a)=\mathrm {argmax}_k \left[ \sum _{s\in \varvec{S}}{\pi (s)\sum _{s'\in \varvec{S}}{\varGamma ^a_t(s'|s)\varvec{\alpha }^k_{t+1}(s')}}\right]\) and \(\alpha ^k_{t+1}(s')\) is \(\alpha\)-vector defined by Lemma A.5. Then, based on the revised \(\alpha\)-vector \({\widetilde{\alpha }}_t^\kappa (\varvec{\pi },a)\), the optimizing \(\alpha\)-vector for a given belief \(\varvec{\pi }\in \varvec{\Pi }\) is denoted as \(\alpha ^{k^*(\varvec{\pi })}_t\) where \(k^*(\varvec{\pi })=\mathrm {argmax}_{\left\{ \kappa \left( \varvec{\pi },W\right) ,\kappa \left( \varvec{\pi },A\right) \right\} } \left[ \sum _{s\in \varvec{S}}{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi },W\right) }_t\left( s\right) },\sum _{s\in \varvec{S}}{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi },A\right) }_t\left( s\right) }\right]\).

Proof of Lemma 3

First, we express the optimal value function for the updated belief \({\varvec{\tau } }^{a,o}_{\pi }\) in terms of \(\alpha\)-vectors introduced in Lemma A.5 as

$$\begin{aligned} V^*_{t+1}({\varvec{\tau } }^{a,o}_{\pi })&=\max _{k}\left[ \sum _{s'\in S}{\tau ^{a,o}_{\pi }(s')\alpha ^k_{t+1}(s')}\right] \\&=\max _{k} \left[ \sum _{s'\in S}{\left( \frac{\sum _{s\in S}{\pi (s)\varLambda ^{s,a}_t(o)\varGamma ^{a,o}_t(s'|s)}}{\sum _{s\in S}{\pi (s)\varLambda ^{s,a}_t(o)}}\right) {\alpha }^k_{t+1}\left( s'\right) }\right] \\&=\max _{k} \left[ \frac{1}{\sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}\right. \\&\quad \left. \sum _{s'\in S}{\sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }}\right] , \end{aligned}$$

where \({\alpha }^k_{t+1}\left( s'\right)\) is the \(\alpha\)-vector in Lemma A.5.

Now, the optimal value function for an action a is

$$\begin{aligned} \begin{aligned} V^a_t\left( \varvec{\pi }\right)&=\mathrm {max} \left[ \sum _{s\in S}{\sum _{o\in O}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) r_t\left( s,a,o\right) }}\right. \\&\quad \left. +\sum _{s\in S}{\sum _{o\in O}{\sum _{s'\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( s'|s\right) V^*_{t+1}\left( {\varvec{\tau }}^{a,o}_{\pi }\right) }}}\right] \ \\&=\mathrm {max} \left[ \sum _{s\in S}{\sum _{o\in O}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) r_t\left( s,a,o\right) }}+ \right. \\&\quad \left. \sum _{s\in S}{\sum _{o\in O}{\sum _{s'\in S}{\frac{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( s'|s\right) \left\{ \sum _{s'\in S}{\sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) {{\Gamma }}^{a,o}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }}\right\} \ }{\sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) }}}}}\right] \\&=\mathrm {max} \left[ \sum _{s\in S}{\sum _{o\in O}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) r_t\left( s,a,o\right) }}\right. \\&\quad \left. +\sum _{o\in O}{\sum _{s\in S}{\pi \left( s\right) {{\Lambda }}^{s,a}_t\left( o\right) \sum _{s'\in S}{{{\Gamma }}^{a,o}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }}}\right] \ \\&=\mathrm {max} \left[ \sum _{s\in S}\pi \left( s\right) \left\{ \sum _{o\in O}{{\Lambda }}^{s,a}_t\left( o\right) \left( r_t\left( s,a,o\right) \right. \right. \right. \\&\quad \left. \left. \left. +\sum _{s'\in S}{{{\Gamma }}^{a,o}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }\right) \right\} \right] \ \\&={\mathrm {max} \left[ \sum _{s\in S}{\pi \left( s\right) \left( r_t\left( s,a\right) +\sum _{s'\in S}{{{\Gamma }}^a_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }\right) }\right] }. \end{aligned} \end{aligned}$$

Then, the optimal value function for a given action a becomes \(V^a_t\left( \varvec{\pi }\right) =\sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,a\right) }_t\left( s\right) }\), where \(\kappa \left( \varvec{\pi } ,a\right) ={{\mathrm {argmax}}_k \left[ \sum _{s\in S}{\pi \left( s\right) \sum _{s'\in S}{{{\Gamma }}^a_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }}\right] \ }\).

Based on this formulation, we can see that the overall optimal value function is expressed as

$$\begin{aligned} V^*_t\left( \varvec{\pi }\right) =\mathrm {max}\left\{ V^W_t\left( \varvec{\pi }\right) ,V^A_t\left( \varvec{\pi }\right) \right\} =\sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{k^*\left( \pi \right) }_t}\ ,\end{aligned}$$

where \(k^*\left( \varvec{\pi } \right) ={\mathop {\mathrm {argmax}}_{\left\{ \kappa \left( \varvec{\pi } ,W\right) ,\kappa \left( \varvec{\pi } ,A\right) \right\} } \left[ \sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,W\right) }_t\left( s\right) },\sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }\right] \ }\). \(\square\)

Proposition 3

Suppose the following conditions on disutility hold in addition to (C1)–(C3), then the optimizing revised \(\alpha\)-vector is non-increasing in \(s\in S\) for an arbitrary belief \(\varvec{\pi }\in \varvec{\Pi }\): that is, for any \(s_1,s_2\in S\) such that \(s_1<s_2\), \({{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi }\right) }_t\left( s_1\right) \ge {{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi }\right) }_t\left( s_2\right)\) for all \(t\le t_E\).

$$\begin{aligned} \text {(C6) }&\phi ^{o=y}_{s=0} = \phi ^{o=y}_{s=1}=\phi ^{o=y}_{s=2}=\phi _{a=W}=\phi _{s=0}=0,&\\ \text {(C7) }&\phi _{a=A}+{\phi }^{o=s^C}_{s=0}\le {\phi }_{s=1},&\\ \text {(C8) }&\phi _{s=1}+{\phi }_{a=A}+{\phi }^{o=s^C}_{s=1}\le {\phi }_{s=2}\le 1-{\phi }_{a=A}-{\phi }^{o=s^C}_{s=2}.&\end{aligned}$$

Proof of Proposition 3

From Lemma 3, we know that

$$\begin{aligned} {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,a\right) }_t=\mathrm {max}\left[ \sum _{o\in O}{{{\Lambda }}^{s,a}_t\left( o\right) \left( r_t\left( s,a,o\right) +\sum _{s'\in S}{{{\Gamma }}^{a,o}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }\right) }\right] {\ .} \end{aligned}$$

First, we can show that \(r_t\left( s,a,o\right)\) is a non-increasing function in \(s\in S\) for any \(a{\in }{\mathcal {A}}\) and \(o\in O\). Based on (C6), we can derive following minimums and maximums.

$$\begin{aligned} {\mathop {\mathrm {min}}_{a,o} \left[ r_t\left( s=0,a,o\right) \right] \ }&=1-{\phi }_{a=A}-{\phi }^{o=s^C}_{s=0}{\ ,} \\ {\mathop {\mathrm {max}}_{a,o} \left[ r_t\left( s=1,a,o\right) \right] \ }&=1-{\phi }_{s=1}{\ ,} \\ {\mathop {\mathrm {min}}_{a,o} \left[ r_t\left( s=1,a,o\right) \right] \ }&=1-{\phi }_{a=A}-{\phi }^{o=s^C}_{s=1}-{\phi }_{s=1}{\ ,} \text { and} \\ {\mathop {\mathrm {max}}_{a,o} \left[ r_t\left( s=2,a,o\right) \right] \ }&=1-{\phi }_{s=2}{\ .} \end{aligned}$$

From (C7)–(C8), it is straightforward to show that \({\mathop {\mathrm {min}}_{a,o} \left[ r_t\left( s=0,a,o\right) \right] \ }\ge {\mathop {\mathrm {max}}_{a,o} \left[ r_t\left( s=1,a,o\right) \right] \ }\) and \({\mathop {\mathrm {min}}_{a,o} \left[ r_t\left( s=1,a,o\right) \right] \ }\ge {\mathop {\mathrm {max}}_{a,o} \left[ r_t\left( s=2,a,o\right) \right] \ }\). Therefore, \(r_t\left( s,a,o\right)\) is non-increasing in \(s\in \varvec{S}\).

At the last time epoch \(t=t_E\), the optimal value function is defined as

$$\begin{aligned} V^*_{t_E}\left( \varvec{\pi }\right) \mathrm {=}{\mathop {\mathrm {max}}_{a} \left[ \sum _{s\in \varvec{S}}{\pi \left( s\right) }\sum _{o\in \varvec{O}}{{{\Lambda }}^{s,a}_{t_E}\left( o\right) r_{t_E}\left( s,a,o\right) }\right] \ }{\ ,} \end{aligned}$$

which implies that the\(\ \alpha\)-vector can be defined as \({\alpha }_{t_E}\left( s\right) =r_{t_E}\left( s,a\right) =\sum _{o\in O}{{{\Lambda }}^{s,a}_{t_E}\left( o\right) r_{t_E}\left( s,a,o\right) }\). From the result above, \(r_{t_E}\left( s,a,o\right)\) is non-increasing in \(s\in \varvec{S}\) for any \(a{\in }{\mathcal {A}}\) and \(o\in \varvec{O}\) hence the optimizing \(\alpha\)-vector at time \({t_E}\) is non-increasing in \(s\in \varvec{S}\). In other words, the assertion holds when \(t={t_E}\). Now, assume inductively that the assertion holds at \(t+1,\ t+2,\dots ,\ {t_E}\) and assume the optimizing \(\alpha\)-vector \({{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi } \right) }_t\) is associated with action \(a^*\). Based on (C1)–(C3) and Proposition 1, \({\varvec{{\Gamma }}}^a_t\in {TP}_2\) and, from Definition 3 and Lemma A.2, we get

$$\begin{aligned} {\varvec{{\Gamma }}}^a_t\left( \cdot |0\right) {\varvec{\le }}_r{\varvec{{\Gamma }}}^a_t\left( \cdot |1\right) {\varvec{\le }}_r{\varvec{{\Gamma }}}^a_t\left( \cdot |2\right) {\ }{\Rightarrow }{\varvec{{\Gamma }}}^a_t\left( \cdot |0\right) {\varvec{\le }}_s{\varvec{{\Gamma }}}^a_t\left( \cdot |1\right) {\varvec{\le }}_s{\varvec{{\Gamma }}}^a_t\left( \cdot |2\right) {\ ,}\end{aligned}$$

From the above inequalities and Lemma A.1,

$$\begin{aligned}&{{\Gamma }}^{a^*}_t\left( 0|0\right) {\alpha }^k_{t+1}\left( 0\right) +{{\Gamma }}^{a^*}_t\left( 1|0\right) {\alpha }^k_{t+1}\left( 1\right) +{{\Gamma }}^{a^*}_t\left( 2|0\right) {\alpha }^k_{t+1}\left( 2\right) \\&\quad {\ge }{{\Gamma }}^{a^*}_t\left( 0|1\right) {\alpha }^k_{t+1}\left( 0\right) +{{\Gamma }}^{a^*}_t\left( 1|1\right) {\alpha }^k_{t+1}\left( 1\right) +{{\Gamma }}^{a^*}_t\left( 2|1\right) {\alpha }^k_{t+1}\left( 2\right) {\ ,}\end{aligned}$$

where the inequality holds due to the induction assumption and similarly we get

$$\begin{aligned}&{{\Gamma }}^{a^*}_t\left( 0|1\right) {\alpha }^k_{t+1}\left( 0\right) +{{\Gamma }}^{a^*}_t\left( 1|1\right) {\alpha }^k_{t+1}\left( 1\right) +{{\Gamma }}^{a^*}_t\left( 2|1\right) {\alpha }^k_{t+1}\left( 2\right) \\&\quad {\ge }{{\Gamma }}^{a^*}_t\left( 0|2\right) {\alpha }^k_{t+1}\left( 0\right) +{{\Gamma }}^{a^*}_t\left( 1|2\right) {\alpha }^k_{t+1}\left( 1\right) +{{\Gamma }}^{a^*}_t\left( 2|2\right) {\alpha }^k_{t+1}\left( 2\right) {\ .}\end{aligned}$$

Therefore, \(\sum _{s'}{{{\Gamma }}^{a^*}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }\) is non-increasing in \(s\in S\).

Because both \(r_t\left( s,a^*,o\right)\) and \(\sum _{s'}{{{\Gamma }}^{a^*,o}_t\left( s'|s\right) {\alpha }^k_{t+1}\left( s'\right) }\) are non-increasing in \(s\in S\), we have

$$\begin{aligned}&{{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi } \right) }_t\left( s_1\right) \\&\quad =\sum _{o\in O}{{{\Lambda }}^{s_1,a^*}_t\left( o\right) \left( r_t\left( s_1,a^*,o\right) +\sum _{s'\in S}{{{\Gamma }}^{a^*,o}_t\left( s'|s_1\right) {\alpha }^k_{t+1}\left( s'\right) }\right) } \\&\quad =\sum _{o\in O}{{{\Lambda }}^{s_1,a^*}_t\left( o\right) r_t \left( s_1,a^*,o\right) }+\sum _{s'\in S}{{{\Gamma }}^{a^*}_t\left( s'|s_1\right) {\alpha }^k_{t+1}\left( s'\right) } \\&\quad \ge \sum _{o\in O}{{{\Lambda }}^{s_2,a^*}_t\left( o\right) r_t\left( s_2,a^*,o\right) }+\sum _{s'\in S}{{{\Gamma }}^{a^*}_t\left( s'|s_2\right) {\alpha }^k_{t+1}\left( s'\right) }={{\widetilde{\alpha }}}^{k^*\left( \pi \right) }_t\left( s_2\right) \ , \end{aligned}$$

where \(\sum _{o\in O}{{{\Lambda }}^{s,a^*}_t\left( o\right) }\mathrm {=1}\) for any given \(s\in S\). Based on the results above, for any \(s_1,s_2\in S\) such that \(s_1<s_2\), \({{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi } \right) }_t\left( s_1\right) \ge {{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi } \right) }_t\left( s_2\right)\) for all \(t\le {t_E}\). \(\square\)

Finally, based on Lemma 3 and Proposition 3, we give Theorem 1.

Theorem 1

Suppose (C1)–(C3) and (C6)–(C8) hold. Then, for any belief vectors \(\varvec{\pi },\varvec{\pi }'\in \varvec{{\varPi }}\) such that \(\varvec{\pi }{\le }_s\varvec{\pi }'\), \(V^*_t\left( \varvec{\pi }\right) \ge V^*_t\left( \varvec{\pi }'\right)\) for all \(t\le t_E\).

Proof of Theorem 1

Based on Lemma 3, the optimal value function is

$$\begin{aligned} V^*_t\left( \varvec{\pi }\right) ={\mathop {\mathrm {max}}_{k} \left[ \sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^k_t\left( s|\varvec{\pi } \right) }\right] \ }=\sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi } \right) }_t\left( s\right) }{\ .}\end{aligned}$$

From Lemma A.1 and Proposition 3, we get

$$\begin{aligned} V^*_t\left( \varvec{\pi }\right) =\sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi } \right) }_t\left( s\right) }\ge \sum _{s\in S}{\pi \left( s\right) {{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi }'\right) }_t\left( s\right) }\ge \sum _{s\in S}{\pi '\left( s\right) {{\widetilde{\alpha }}}^{k^*\left( \varvec{\pi }'\right) }_t\left( s\right) }=V^*_t\left( \varvec{\pi }'\right) {\ ,}\end{aligned}$$

where the first inequality holds because of the definition of the optimal value function. \(\square\)

As we see in Theorem 1, we do not need the \({TP}_2\) property on the observation probability matrix. Therefore, it is permissible to violate (C5) in Lemma 2. The Analytical Result 3 is a summary of Theorem 1, Lemma 3, and Proposition 3.

Proof of analytical result 4

The Analytical Result 4 is based on Theorem 2 and Corollary 1.

Theorem 2

Let \(a^*_t\left( \varvec{\pi }\right)\) denote the optimal action at time t for a given belief \(\varvec{\pi }\in \varvec{{\varPi }}\). Suppose (C1)–(C4) and (C6)–(C8) hold. Furthermore, suppose (C5) holds for\(\ a=W\) and \(\sum _s{\left( \pi \left( s\right) -\pi '\left( s\right) \right) \sum _{s'}{\varGamma ^A_t(s'|s){{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi },A\right) }_{t+1}\left( s'\right) }}\ge 0\) holds. Then, if \(a^*_t\left( \varvec{\pi }\varvec{'}\right) =W\) then \(a^*_t\left( \varvec{\pi }\right) =W\) and if \(a^*_t\left( \varvec{\pi }\right) =A\), then \(a^*_t\left( \varvec{\pi }\varvec{'}\right) =A\) for any \(\varvec{\pi },\varvec{\pi }\varvec{'}\in \varvec{{\varPi }}\) such that \(\varvec{\pi }{\le }_s\varvec{\pi }\varvec{'}\).

Proof of Theorem 2

Consider the case of \(a^*_t\left( \varvec{\pi }\varvec{'}\right) =W\). Theorem 2 says that \(V^W_t\left( \varvec{\pi }'\right) \ge V^A_t\left( \varvec{\pi }'\right)\) and \(V^W_t\left( \varvec{\pi }\right) \ge V^A_t\left( \varvec{\pi }\right)\). Now, suppose the converse is true which means \(V^W_t\left( \varvec{\pi }'\right) \ge V^A_t\left( \varvec{\pi }'\right)\) and \(V^W_t\left( \varvec{\pi }\right) <V^A_t\left( \varvec{\pi }\right)\). In this case, we get

$$\begin{aligned} V^W_t\left( \varvec{\pi }'\right) -V^W_t\left( \varvec{\pi }\right) >V^A_t\left( \varvec{\pi }'\right) -V^A_t\left( \varvec{\pi }\right) . \end{aligned}$$
(1)

Because (C4) holds and (C5) holds for \(a=W\), based on Lemma 2, \({\varvec{{\Lambda }}}^W_t\in {TP}_2\). Also, because (C1)–(C3) hold, \({\varvec{{\Gamma }}}^W_t\in {TP}_2\) based on Proposition 1. When both \({\varvec{{\Lambda }}}^W_t\) and \({\varvec{{\Gamma }}}^W_t\) have \({TP}_2\) property, we can show that \(V^W_t\left( \varvec{\pi }\varvec{'}\right) -V^W_t\left( \varvec{\pi }\right) \le 0\) because \(V^W_t\left( \varvec{\pi }\right) \ge V^W_t\left( \varvec{\pi }\varvec{'}\right)\) for \(\varvec{\pi }{\varvec{\le }}_s\varvec{\pi }\varvec{'}\). We omit this proof which depends on (C6)–(C8), Lemma A.1, and Proposition 2.

Now, from (1), we obtain

$$\begin{aligned} V^A_t\left( {\varvec{\pi }'}\right)<V^A_t\left( \varvec{\pi }\right) \Rightarrow \sum _s{\pi '\left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ',A\right) }_t\left( s\right) }<\sum _s{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }\\ \Rightarrow \sum _s{\pi '\left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ',A\right) }_t\left( s\right) }-\sum _s{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }<0\ . \end{aligned}$$

Because \({{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\) is the optimizing \(\alpha\)-vector, we get

$$\begin{aligned}&\sum _s{\pi '\left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }-\sum _s{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }\\&\quad \le \sum _s{{\pi }'{\left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( {\varvec{\pi }}',A\right) }_t\left( s\right) }}-\sum _s{\pi \left( s\right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }<0 \\&\quad \Rightarrow \sum _s{\left( \pi \left( s\right) -\pi '\left( s\right) \right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }<0, \end{aligned}$$

which contradicts to the condition \(\sum _s{\left( \pi \left( s\right) -\pi '\left( s\right) \right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }\ge 0\).

Now, consider the case of \(a^*_t\left( \varvec{\pi }\varvec{'}\right) =A\). Theorem 2 shows that \(V^A_t\left( \varvec{\pi }\right) \ge V^W_t\left( \varvec{\pi }\right)\) and \(V^A_t\left( \varvec{\pi }\varvec{'}\right) \ge V^W_t\left( \varvec{\pi }\varvec{'}\right)\). Suppose the converse is true which means \(V^A_t\left( \varvec{\pi }\right) \ge V^W_t\left( \varvec{\pi }\right)\) and \(V^A_t\left( \varvec{\pi }\varvec{'}\right) <V^W_t\left( \varvec{\pi }\varvec{'}\right)\). Then, we obtain

$$\begin{aligned}V^A_t\left( \varvec{\pi }\right) -V^A_t\left( \varvec{\pi }\varvec{'}\right) >V^W_t\left( \varvec{\pi }\right) -V^W_t\left( \varvec{\pi }\varvec{'}\right) \ge 0\ .\end{aligned}$$

Therefore, \(V^A_t\left( {\varvec{\pi }}'\right) <V^A_t\left( \varvec{\pi }\right)\) and, as shown before, \(\sum _s{\left( \pi \left( s\right) -\pi '\left( s\right) \right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }<0\) which contradicts to the condition \(\sum _s{\left( \pi \left( s\right) -\pi '\left( s\right) \right) {{\widetilde{\alpha }}}^{\kappa \left( \varvec{\pi } ,A\right) }_t\left( s\right) }\ge 0\). \(\square\)

From Theorem 2, we get Corollary 1 as follows:

Corollary 1

Define two probabilities as \({\pi }^*_{GH}=\mathrm {max}\left\{ \pi \left( 0\right) :\ \pi \left( 1\right) =0,a^*\left( \varvec{\pi }\right) =A\right\}\) and \({\pi }^*_{GL}=\mathrm {max}\left\{ \pi \left( 1\right) :\ \pi \left( 0\right) =0,a^*\left( \varvec{\pi }\right) =A\right\}\). Suppose the conditions in Theorem 2 hold, then \({\pi }^*_{GH}\le {\pi }^*_{GL}\).

Proof of Corollary 1

Suppose the converse is true, \({\pi }^*_{GH}>{\pi }^*_{GL}\), and specify two beliefs \({\varvec{\pi }}_1\) and \({\varvec{\pi }}_2\) as \({\varvec{\pi }}_1=[ \begin{array}{ccc} {\pi }^*_{GH}&0&1-{\pi }^*_{GH} \end{array} ]\) and \({\varvec{\pi }}_2=[ \begin{array}{ccc} 0&{\pi }^*_{GH}&1-{\pi }^*_{GH} \end{array} ]\). Then, by definition, it is easy to see that \(a^*\left( {\varvec{\pi }}_1\right) =A\) and \({\varvec{\pi }}_1{\le }_s{\varvec{\pi }}_2\). Therefore, based on Theorem 2, \(a^*\left( {\varvec{\pi }}_2\right) =A\). Now, because \(a^*\left( {\varvec{\pi }}_2\right) =A\) and \({\varvec{\pi }}_2\left( 0\right) =0\), by definition, we get \({\pi }^*_{GL}\ge {\pi }^*_{GH}\) which contradicts to \({\pi }^*_{GH}>{\pi }^*_{GL}\). \(\square\)

Appendix B: Sensitivity analysis

To check the robustness of our model and to quantify the impact of potential violation of our assumption on trust transition, we conduct a series of numerical experiments assuming that the patients are enrolled to the SAM program for a year (365 days). In our study, we initially assume that the trust state evolves according to the trust state transition probability matrix (Table 2 in the manuscript). There are two probability matrices: one for the case when the patient visited a clinic and went through a clinical diagnosis and another for the case when there was no diagnosis performed. The matrices are defined based on the assumption that trust mainly depends on the performance of the system (e.g., false alarm and misdetection reduce the trust level whereas correct alert/no-alert should increase the trust level). To forcefully create a hypothetical scenario where trust is affected by other unknown factors, we assume that a random trust state transition occurs with a probability \(\theta\). In other words, instead of following the specific trust state transition function, for \(365\times \theta\) days within a year, the trust level of the patient is determined by flipping a coin (50/50% chance of being in high/low trust state). By increasing \(\theta\), to some extent, we can show how robust (or vulnerable) the method is when our assumption on trust transition was violated. Table 5 summarizes the numerical experiment results. For each simulation run, we assumed 1000 patients are using the SAM system. The end of decision time is 365 (\(t_E\)=365).

Table 5 Sensitivity analysis on random trust state transition

As expected, larger \(\theta\) (i.e., trust depends more heavily on other factors than the performance of the system) reduces the performance (mean QALD) of our method. Under the perfect scenario where trust depends solely on the performance of the system, the average QALD per year is about 344 (as reported in Fig. 6 in the manuscript). The average QALD decreases by 6% when 10% of the trust state transition is triggered by other factors unknown to the model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, J., Kim, Y. & Zhou, S. Alerting patients via health information system considering trust-dependent patient adherence. Inf Technol Manag 23, 245–269 (2022). https://doi.org/10.1007/s10799-021-00350-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-021-00350-8

Keywords

Navigation