
Vol.:(0123456789)1 3

Information Technology and Management (2022) 23:167–192
https://doi.org/10.1007/s10799-022-00365-9

Task allocation and coordination process in distributed agile software
development: an ontology based approach

Chitra Nundlall1 · Soulakshmee D. Nagowah1 

Accepted: 9 April 2022 / Published online: 10 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Distributed agile software development (DASD) has gained much popularity over the past years. It relates to Agile Software
Development (ASD) being executed in a distributed environment due to factors such as low development budget, emerging
software application markets and the need for more expertise. DASD faces a number of challenges with respect to coordina-
tion and communication issues. Task allocation in such an environment thus becomes a challenging task. Adopting proper task
allocation strategy is crucial to overcome challenges and issues in DASD. Various studies highlight the challenges being faced
by DASD and have proposed solutions in the form of framework or models. Knowledge models in the form of ontologies can
help to solve certain issues and challenges by providing a proper representation of data that is shareable among distributed
teams. Several ontologies with respect to task allocation exist. However, ontologies incorporating factors and dependencies
influencing task allocation process in DASD are limited. An ontology representing the knowledge related to task allocation
and coordination is important for proper decision making in organizations. Based on an in-depth literature review and a
survey conducted among professionals in industry, this paper proposes an ontology, OntoDASD, that incorporates relevant
factors and dependencies to be considered in task allocation and coordination process in DASD environment. The ontology
facilitates team coordination through effective communication and task allocation by defining the concepts to share knowledge
and information in an appropriate way. OntoDASD has been properly evaluated and validated by professionals in the field.

Keywords  Distributed agile software development · Task allocation · Coordination · Ontology

1  Introduction

Distributed software development (DSD) has gained
popularity from the last decade due to the high competition
in software market. It aims at serving customers around the
world and exploiting the advantages of low-cost workforce
[1]. DSD allows work to be done simultaneously by
various teams spread across the world [2]. ASD is another
paradigm that became popular in the past decade due to
its benefits such as customer satisfaction and cooperation
of individuals to achieve objectives efficiently [3]. DSD
companies, which have expanded their business globally,

are following the same philosophy of ASD such as self-
assigning tasks, open floor discussions and coordination
[4]. This agile principle is best suited for collocated teams
as it promotes effective coordination amongst various teams
working at the same geographical location [5]. However,
when applied in distributed environments, intra and inter
team coordination challenges crop up, leading to delays in
communication [2, 6]. Layman et al. [7] reported that lack
of informal communication, in turn, leads to low levels of
trust and awareness of work and progress at remote sites.

Task allocation in a distributed setting is another critical
activity to be tackled. Task allocation in DASD is shared
within an empowered team and is not the sole responsibility
of the project manager [8]. Frustration among team
members, lack of motivation, low quality and inaccurate
estimates are the issues that result from task allocation
performed by solely the project manager [8]. Proper task
allocation attempts to reduce the time spent for completing
projects [53]. In DASD, a number of factors exist that impact
task allocation and coordination process [9]. Studying

 *	 Soulakshmee D. Nagowah
	 s.ghurbhurrun@uom.ac.mu

	 Chitra Nundlall
	 shwetanundlall@gmail.com

1	 Department of Software and Information Systems, Faculty
of Information, Communication and Digital Technologies,
University of Mauritius, Moka, Mauritius

http://orcid.org/0000-0003-3307-8325
http://crossmark.crossref.org/dialog/?doi=10.1007/s10799-022-00365-9&domain=pdf

168	 Information Technology and Management (2022) 23:167–192

1 3

these factors is crucial so that the project success is not
hindered [9]. Literature highlights the need to consider
dependencies as well during decision-making [10–12].
Insufficient attention to dependencies can contribute to
unsatisfactory progress as they may constrain work progress
[10]. Researchers are still undergoing several studies in the
area and are still looking for effective solutions to solve the
task coordination challenges. As mentioned by Rocha et al.
[13], lack of communication, management and cultural
differences are the obstacles for efficient distribution of team
to carry out a certain activity. Some of the challenges in task
assignment are documentation, pair programming, working
hours of different sites and cultural differences [14]. Lack of
documentation in distributed setting can cause rework and
waste of time [14]. Additionally, the team tends to miss out
important information [14]. Different working hours lead
to poor coordination between teams. Planning challenges
also impact task allocation process [11]. Lack of planning or
requirement gathering gives rise to changes in current plan,
increasing backlog, which has to be reprioritized.

In a distributed environment consisting of different teams
and different sites, it is important to share high-level knowl-
edge regarding projects information and staff details among
others so that there is a homogeneous comprehension of the
project’s information as well as staff involved (their expertise
and availability). There is a need for a common understand-
ing of the terms and concepts related to the task allocation
and coordination process in DASD projects. Research has
shown that the integration of software engineering and
semantic web technologies has led to the sharing and reuse
of knowledge especially when teams are located in different
geographical areas [15, 16]. A knowledge-based model such
as an ontology can help in knowledge sharing and knowl-
edge transfer among these distributed teams in DASD and
thus resolve communication and coordination issues [17,
18]. Rocha et al. [18] add that such an approach enhances
task allocation and coordination process by preventing task
misinterpretation. Ontologies have been used in different
phases of the software development process as classified by
Vizcaíno et al. [16] and Martínez-García et al. [19]. Gruber
[20] defines an ontology as an “explicit specification of a
conceptualization”. An ontology represents “the effort to
formulate an exhaustive and rigorous conceptual schema
within a given domain, typically a hierarchical data struc-
ture containing all the relevant elements and their relation-
ships and rules (regulations) within the domain.” [21]. It is
a knowledge representation model that defines concepts and
properties in the domain [22].

The general question used for this research was: Is it pos-
sible to create an ontology to resolve coordination and task
allocation challenges in DASD? In an attempt to address
this research question, an ontology, entitled OntoDASD is
proposed, developed and evaluated. The ontology aims to

represent relevant factors and dependencies to enhance the
task allocation and coordination process across teams in
a distributed environment. In order to develop the knowl-
edge–based model, the following objectives were defined:

•	 Review existing ontologies from miscellaneous papers in
the field and perform an in-depth analysis

•	 Describe the methodology for ontology development
•	 Define a list of competency questions that the ontology

should answer
•	 Provide a common vocabulary for team members and

project managers to assist them in the decision-making
by defining concepts and properties

•	 Develop the ontology in OWL
•	 Demonstrate the use of the ontology to answer above

competency questions by presenting SPARQL query
results

•	 Evaluate the ontology

The remainder of the paper is organized as follows:
Sect. 2 provides a summary of the related works. Section 3
describes the methodology adopted to develop the ontology.
Section 4 describes the evaluation process where the ontol-
ogy has been assessed. Section 5 concludes on the work
done and the results.

2 � Related work

In this section, ontologies and taxonomy in the field of task
allocation and coordination are described. The main goal
of studying the related works was to investigate whether
the existing ontologies satisfy the requirements to meet our
objectives defined in Sect. 1. The ontologies are further
compared in Table 1.

Rajpathak et al. [23] proposed a generic task ontology
for scheduling problems. Though the ontology is developed
for scheduling application, the key concepts adopted are
constraints, cost, activity, task and resource, which are the
factors necessary for task allocation and coordination. The
relationships between the various entities demonstrate the
conceptual model for task scheduling.

Almeida et al. [24] proposed concept mapping consist-
ing of three different concept hierarchies namely general,
Global Software Development (GSD) and scrum criteria.
The authors used the term GSD to represent DSD. The
model was based on the input and judgement of project
managers and applied multi-criteria approach focusing on
cost reduction and task allocation [24]. The study targeted
DASD using scrum methodology. It describes general and
DSD related factors along with factors related to the agile
methodology adopted in scrum.

169Information Technology and Management (2022) 23:167–192	

1 3

Strode and Huff [12] have investigated on dependencies
in agile software development. The paper proposed a
taxonomy consisting of task, resource and knowledge
dependencies. Requirement, expertise, task allocation
and historical dependencies were grouped into knowledge
dependency. Activity and business process were grouped
into task dependency. Entity and technical dependencies
were grouped into resource dependency. The taxonomy
was proposed to project stakeholders as a tool for decision
making to prevent them from facing issues in their projects.

Marques et al. [25] proposed an ontology for task
allocation to teams in distributed software development
based on the concepts proposed by Mak and Kruchten
[26]. The ontology is composed of 6 fragments: Artifacts,
Activities, Competences, Teams, Organization and Project
team. Artifacts, Activities and Teams are the concepts
proposed by Mak and Kruchten [26] for task coordination
in an agile distributed software development. The work by
Marques et al. [25] has been considered most relevant to this

research as it focused on DSD and had similar objectives.
However, the authors have taken into consideration
some but not all factors that affect task allocation and
coordination in their model. The authors presented their
ontology in fragments with SPO label for Software Process
Ontology [27] and SEO label for Software Enterprise
Ontology [28]. Artifact englobes the resulting products in
the project. Activity factor was taken into consideration
in the ontology. Other factors like competence, time, cost
and activity constraint were also considered. Competences
include factors like knowledge, skills, experience, fluency
level, language, and person and performance history. Team
incorporates factors like cost, historical work, team work
period, cultural alignment for an effective coordination in
DSD. Factors like time zone, site locations, and organization
role are linked to Organization. Project team relates goal,
human resource, team and project showing that different
projects have different priorities. The realization of goal is
done by activity.

Table 1   Analysis of related
works

Papers Factors Dependencies Task Alloca-
tion process

DSD Agile software
development

Taxonomy Ontology

[25] ✓ ✓ ✓ ✓
[24] ✓ ✓ ✓ ✓
[10] ✓ ✓ ✓ ✓ ✓
[12] ✓ ✓ ✓ ✓
DKDOnto [13] ✓ ✓ ✓
[23] ✓ ✓ ✓
[19] ✓ ✓ ✓ ✓
[55] ✓ ✓

Fig. 1   DKDOnto ontology [13]

170	 Information Technology and Management (2022) 23:167–192

1 3

Rocha et al. [13] proposed an ontology named DKDOnto
to support software development with distributed teams. The
main elements of the ontology as shown in Fig. 1 are project,
member, best practices, challenges, skills, place, artifact,
tools and methodology. Project stores all information
related to each phase in the project. Member includes team
member and any other resource who form part of the project.
BestPractices are the measures to be adopted in order to
overcome the challenges in the project. A tool based on
DKDOnto has been implemented to support the software
development process with distributed teams [54].

Ijaz and Aslam [10] studied the dependencies in task
allocation during DASD with the aim to recognize different
types of issues on time before they influence the software
product achievement. In DASD, insufficient attention to
these dependencies at both task level and project level can
lead to agile sprint cancellation or delay and this has a direct
impact on customer satisfaction [10]. The authors proposed
a taxonomy on different types of dependencies such as basic
ones (flow, fit, sharing and component), software and task
related, agile process and distributed environment related.
The authors conducted an in-depth study on the dependen-
cies in DASD.

As minimal documentation is prioritized in agile software
development, knowledge tends to vaporize leading to issues
like poor understanding of requirements and technical solu-
tions, delay in software development projects [19]. It is also
difficult to search for artefacts and experts. Martinez-Garcia
et al. [19] aimed at condensing knowledge by using an ontol-
ogy to provide an information structure that can perform
automated reasoning about knowledge. The authors adopted
Methontology approach to come up with the ontology. Fac-
tors like profile of the expert, artifacts, programming knowl-
edge and projects are captured by the ontology.

Anzures-Garcia et al. [55] proposed a workflow ontol-
ogy for a group’s organizational structure. The aim was to
help computer supported cooperative work (CSCW) teams
to overcome the problems of communication, collaboration
and coordination. This work was found related as it aims at
achieving some of our objectives. The ontology is composed
of an appropriate base of knowledge to represent CSCW
systems development. The workflow ontology demonstrates
the steps to develop these kinds of systems and allows adap-
tations. The factors considered in the research work are tasks
and stage of group’s organizational structure, status, policy,
right, activity and resource, priority of each stage and roles
at each stage.

Table 1 presents the comparison between existing ontol-
ogies based on the most relevant criteria for this research
work:

•	 Factors: Are all the main factors found in the literature
combined in an ontology?

•	 Dependencies: Are all the dependencies incorporated in
an ontology?

•	 Task Allocation: Is the main focus of the ontology to
solve task allocation problem?

•	 DSD: Did the study extend their approach to distributed
teams?

•	 Agile software development: Did the study cater for agile
software development?

•	 Taxonomy: Did the study propose a taxonomy?
•	 Ontology: Was an ontology developed?

Despite the existence of ontologies and taxonomies in
the domain, none have really proposed a task allocation and
coordination ontology that achieves all the objectives of
this study. It can be observed from Table 1 that while some
research works made use of factors namely [13, 23–25], oth-
ers have incorporated dependencies in the task allocation
namely [10, 12]. Both factors and dependencies influence
the task allocation process [9]. There is thus the need for a
knowledge model that incorporates both factors and depend-
encies to ensure a proper task allocation and coordination.
There exist a few studies in this field namely [4, 10, 11,
29–31] in the literature about factors, challenges and meth-
ods for task allocation and coordination in agile distributed
software environment. However, these studies did not pro-
pose an ontology in that area.

Marques et al. [25] have proposed an ontology for
DSD but did not incorporate agile software development
process. The authors only presented the concepts and
their relationships and sought expert opinions to validate
the ontology. They did not present the implementation in
detail. Almeida et al. [24] presented important factors that
should be considered in agile methodology but was limited
to concept hierarchy mapping. Ijaz and Aslam [10] have
proposed a taxonomy on DASD and Strode and Huff [12]
on ASD focusing only on dependencies. Rocha et al. [13]
proposed DKDOnto, open for any ontology but the authors
did not consider dependencies in their ontology. In the
ontology evaluation, the authors used reasoners and other
tools for verification. The research work by Rajpathak et al.
[23] was considered least relevant as it was developed for
scheduling applications. Anzures-Garcia et al. [55] do not
consider overcoming task allocation issues and the work
proposed does not cater for distributed agile software
development. The proposed workflow ontology only shows
the steps for the development of a CSCW system. The factors
considered are limited for CSCW systems. The ontology by
Martinez-Garcia et al. [19] is limited to coding phase in the
software development process. A limited number of factors
was considered for the ontology development. The authors
focused more on illustrating the methodology adopted
to come up with the ontology than the criteria taken into

171Information Technology and Management (2022) 23:167–192	

1 3

consideration. The ontologies [19] and [55] have been used
for informational purpose and not transactional.

The aim of this research work is therefore to address the
shortcomings of existing works and to propose an ontol-
ogy that incorporates all relevant factors and dependencies
affecting task allocation and coordination in DASD. Varia-
tions in the concept mapping presented in the existing stud-
ies lead to challenges for common and shareable represen-
tation of factors. The objectives are to minimize variations
in the concept mapping by reusing terms and vocabularies
already in the literature. The ontology also aims to illustrate
how the factors and dependencies help in assisting task allo-
cation and coordination.

3 � Methodology

This section describes the methodology adopted to develop
OntoDASD ontology for DASD. NeOn methodology by
Suarez-Figueroa et al. [32] has been chosen due to its
advantages of reusing existing ontological resources and
re-engineering concepts to transform non ontological
resources components into ontology representation style
[33]. The overview of the development approach is shown
in Fig. 2. There are seven stages namely initiation, reuse,
reengineering, merging, modelling, implementation and
maintenance phase. The detailed description of each phase
is explained in the following sections.

3.1 � Initiation phase

This phase describes the knowledge acquisition process for
the ontology domain though a literature review as well as
gathering information from experts in the domain. As ini-
tial procedures, a Systematic Literature Review (SLR) was
conducted to find out the factors and dependencies affecting
task allocation and coordination in DASD [35]. A survey
was then designed to get experts’ opinions to validate these

factors and dependencies [36]. The output of this phase is a
motivation scenario and an Ontology Requirements Speci-
fication Document (ORSD). Competency questions present
in the ORSD, are later used for evaluation purposes.

3.1.1 � Literature review

After analyzing the related works, an SLR was necessary to
identify the factors influencing task allocation and coordi-
nation in DASD. People characteristics, site characteristics,
environment, task characteristics, project and agile factors
were identified in the SLR [35]. Table 2 depicts the list of
shortlisted factors, which were found in different publica-
tions. The shortlisting was based on the number of occur-
rences in previous work. The factors in Table 2 are the most
frequently mentioned factors in literature.

While analyzing the related works in the previous sec-
tion, it was found that only two studies by Ijaz and Aslam
[10] and Strode and Huff [12] researched on dependencies
in DASD. A dependency is referred to a process or task that
relies on an action in a project to happen in order to progress
[9]. Dependencies between tasks, people, resources, require-
ments, expertise and others are required for an effective
communication and coordination strategy for a good flow
of information. This motivated us to research on the different
dependencies that exist within a project and within a team.
Dependencies related to knowledge, process and resources
in DASD were retrieved from literature [9]. Table 3 depicts
the list of shortlisted dependencies, which were found in
previous articles. The shortlisting was based on the num-
ber of occurrences in previous work. The dependencies in
Table 3 are the most frequently mentioned dependencies in
literature.

3.1.2 � Survey

To validate the results obtained from literature review, a
survey was conducted with 25 agile participants globally

Fig. 2   NeOn waterfall ontology network life cycle model [34]

172	 Information Technology and Management (2022) 23:167–192

1 3

[36]. The practitioners were asked to rank the importance of
the factors and dependencies based on their importance in
task allocation and coordination in agile distributed software
development. It was found that though literature highlights
a number of factors influencing task allocation process in
distributed agile environment, organizations considered only
a few. This resulted in project failures, communication and
coordination issues and project delays. Figure 3 depicts the

relative scores for the factors in descending order. Weights
were assigned that is 6 being most important factor and 1
being least important. The value scores were calculated by
summing the weights given by each practitioner for each
factor.

As for dependencies, the practitioners were given a list
obtained from literature and were asked to choose those that
they usually consider while assigning tasks. Figure 4 depicts
the number of responses obtained in the survey. The count
represents the number of practitioners who have chosen the
dependencies.

The gap between the literature and the software industry
practice shows that DASD software industry is not paying
enough attention to all the identified factors from literature.
The results of the survey have provided useful feedback,
which helped in the creation of OntoDASD ontology.

3.1.3 � Motivation scenario

This section presents a motivation scenario to provide a
clear picture of the scope of the ontology and to help gather
concepts, terms and relationships for the conceptual model.

Vinci Ltd. is a global agile project located in France, Eng-
land, Germany, Russia and India. Vinci Ltd. is composed of
Jerome (a product owner) and Philip (a scrum master and
quality manager) who performs project supervision from
distance. There are 3 programmers namely Jean, Michelle
and Stephanie from Russia. Michelle and Stephanie are in
Germany. There are 3 testers namely Francois, Marco and
Meidie. Jerome and Philip are in France close to the cus-
tomer, performing requirement engineering together. Jean is
a designer who works in England. There is a team special-
ized in configuration management and maintenance in India.
The team is composed of Ijaz, a configuration manager and
Salim, a maintenance specialist. Philip performs project
supervision. In typical agile environments, when each day
comes, team members pull the next highest priority task from
the product backlog and stick their name to the task on the
board. They just say ‘yes’ they will do it, and no one argues.
Being in a team of 3 to 5, people do not necessitate to be
strict. They are free to choose the tasks they are more com-
fortable with. The team knows when, who is doing what, and
who is best in tackling which tasks. In DSD, such as in Vinci
Ltd, for an effective coordination, good communication is a
must. Distance affects communication leading to poor asso-
ciation among various sites and in turn, to improper task
assignment. It is difficult for Philip to figure out when and
who is doing what in Vinci Ltd. It becomes difficult to adopt
these agile practices to share knowledge between remote
team members. In a project, individuals might want to know
which task depends on the completion of another as well as
the relationships between tasks. Face to face discussions,
whereby team members self-assign tasks, are not possible

Table 2   Factors [35]

Factors Source

Expertise [4, 9, 19, 24, 37–41]
Technical Ability [4, 9, 19, 40, 42–44]
Team members knowledge and skills [4, 9, 29, 40, 43–45]
Personnel availability [9, 19, 38, 41]
Project Manager Maturity [44, 45]
Team Maturity [29, 40]
Task Site Specificity [9, 38, 40, 46]
Labour cost [9, 38, 39, 41, 44, 46]
Workload at site [4, 9, 38, 41, 46]
Working time [9, 29, 39, 42]
Cultural differences [9, 29, 38, 40, 42, 44]
Site locations [9, 47]
Team willingness [4, 39, 44, 45, 48]
Communication [9, 24, 29, 30, 38, 42, 47, 49]
Coordination [9, 24, 29, 30, 42, 45]
Task Size [4, 9, 29, 38, 40, 42]
Proximity to customer requirement [9, 41]
Required resources [4, 9, 41, 48]
Task deadline [4, 9, 46, 48]
Effort [4, 39, 41, 48]
Product Architecture [9, 19, 40]
Product [9, 40]
Transparency [9, 42]
Prioritized delivery [4, 9, 29, 40, 55]
Enough Documentation [9, 19]
Customer collaboration [9, 39]
Language Fluency [29]

Table 3   Dependencies [36]

Dependencies Source

People [10, 11, 30, 38]
Requirements [9, 10, 40]
Activity [10, 11, 49, 55]
Task [9, 10, 30, 38, 40, 55]
Technical aspects [10, 11]
Expertise [9, 10, 40]
Resources [10, 30, 38, 55]
Sites [10, 37, 38]

173Information Technology and Management (2022) 23:167–192	

1 3

in Vinci Ltd. This gives rise to multiple dependencies that
cannot be ignored.

3.1.4 � Ontology requirements specification document
(ORSD)

Based on the motivation scenario, the ORSD was defined
in Table 4. It contains the knowledge necessary to capture
ontology requirements. Non-functional requirements as well
as competency questions are defined in the ORSD.

3.2 � Reuse phase

This phase deals with reusing one or multiple ontological
resources for the ontology to be developed. The output of
this phase is a data dictionary (as shown in Table 5) show-
ing concepts of OntoDASD ontology based on motivation
scenario and ORSD from initiation phase. Source reference
shows the concepts that have been reused from existing
ontologies.

3.3 � Reengineering phase and merging phase

In this phase, the ontological resources (concepts from
existing ontologies) and non-ontological resources (concepts
not used in ontology previously) are transformed into a
formal model. Figure 5 depicts the output of this phase. The
part reengineered concerns factors and dependencies from
the survey.

3.4 � Ontology description and modelling phase

This phase deals with describing and designing of the
ontology based on the requirements. A taxonomy has been
developed based on the results of systematic literature and
survey. It has been used as a starting point for building
domain concepts for our ontology named OntoDASD.
To ease the understanding of the taxonomy, it has been
presented in fragments composing of the main concepts.

Fig. 3   Survey results on factors [36]

Fig. 4   Survey results on dependencies [36]

174	 Information Technology and Management (2022) 23:167–192

1 3

Ta
bl

e 
4  

O
nt

ol
og

y
Re

qu
ire

m
en

t S
pe

ci
fic

at
io

n
D

oc
um

en
t

O
nt

ol
og

y
Re

qu
ire

m
en

ts
 S

pe
ci

fic
at

io
n

D
oc

um
en

t
1

Pu
rp

os
e

To
 re

pr
es

en
t t

as
k

al
lo

ca
tio

n
an

d
co

or
di

na
tio

n
kn

ow
le

dg
e

2
Sc

op
e

It
sh

ou
ld

 in
co

rp
or

at
e

th
e

fa
ct

or
s a

nd
 d

ep
en

de
nc

ie
s a

ffe
ct

in
g

ta
sk

 a
llo

ca
tio

n
an

d
co

or
di

na
tio

n
id

en
tifi

ed
 in

 th
e

lit
er

at
ur

e.
 It

 sh
ou

ld
 h

av
e

th
e

at
tri

bu
te

s r
eq

ui
re

d
to

 b
e

us
ed

 in
 a

n
al

go
rit

hm
 fo

r
al

lo
ca

tin
g

ta
sk

3
Im

pl
em

en
ta

tio
n

La
ng

ua
ge

Th
e

on
to

lo
gy

 sh
ou

ld
 b

e
im

pl
em

en
te

d
in

 a
n

on
to

lo
gy

 la
ng

ua
ge

 O
W

L
us

in
g

Pr
ot

ég
é

to
ol

4
In

te
nd

ed
 E

nd
-U

se
rs

Th
e

en
d

us
er

s w
ill

 b
e

ag
ile

 p
ro

fe
ss

io
na

ls
 su

ch
 a

s p
ro

je
ct

 m
an

ag
er

s,
te

am
 le

ad
er

s a
nd

 te
am

 m
em

be
rs

 in
 so

ftw
ar

e
in

du
str

y
5

In
te

nd
ed

 U
se

s
Th

e
on

to
lo

gy
 w

ill
 b

e
us

ed
 in

 a
 lo

ca
l j

av
a

ap
pl

ic
at

io
n

to
 a

llo
ca

te
 ta

sk
 to

 e
nd

 u
se

rs
6

O
nt

ol
og

y
Re

qu
ire

m
en

ts
(a

) N
on

-F
un

ct
io

na
l R

eq
ui

re
m

en
ts

C
od

e
D

es
cr

ip
tio

n
Ac

cu
ra

cy
N

FR
1

Th
e

co
nc

ep
ts

 sh
ou

ld
 b

e
re

pr
es

en
te

d
in

 a
 lo

gi
ca

l f
or

m
 th

at
 c

om
pl

y
w

ith
 th

e
ex

pe
rti

se
 o

f t
he

 u
se

rs
N

FR
2

Th
e

on
to

lo
gy

 sh
ou

ld
 c

ap
tu

re
 a

nd
 c

or
re

ct
ly

 re
pr

es
en

t a
sp

ec
ts

 o
f t

he
 re

al
 w

or
ld

C
la

ri
ty

N
FR

3
Th

e
on

to
lo

gy
 sh

ou
ld

 e
ffe

ct
iv

el
y

co
m

m
un

ic
at

e
th

e
in

te
nd

ed
 m

ea
ni

ng
 o

f t
he

 d
efi

ne
d

te
rm

s
N

FR
4

Th
e

de
fin

iti
on

s s
ho

ul
d

be
 d

oc
um

en
te

d
N

FR
5

Th
e

on
to

lo
gy

 sh
ou

ld
 b

e
un

de
rs

ta
nd

ab
le

C
om

pl
et

en
es

s
N

FR
6

Th
e

do
m

ai
n

of
 in

te
re

st
sh

ou
ld

 b
e

ap
pr

op
ria

te
ly

 c
ov

er
ed

N
FR

7
C

om
pe

te
nc

y
qu

es
tio

ns
 sh

ou
ld

 b
e

de
fin

ed
 a

nd
 th

e
on

to
lo

gy
 sh

ou
ld

 a
ns

w
er

 th
em

N
FR

8
Th

e
on

to
lo

gy
 sh

ou
ld

 in
cl

ud
e

al
l r

el
ev

an
t c

on
ce

pt
s

C
on

ci
se

ne
ss

N
FR

9
Th

e
on

to
lo

gy
 sh

ou
ld

 n
ot

 c
on

ta
in

 re
du

nd
an

t a
nd

 u
se

le
ss

 d
efi

ni
tio

ns
N

FR
10

Th
e

on
to

lo
gy

 sh
ou

ld
 d

efi
ne

 o
nl

y
es

se
nt

ia
l t

er
m

s
(b

) F
un

ct
io

na
l R

eq
ui

re
m

en
ts

: G
ro

up
s o

f C
om

pe
te

nc
y

Q
ue

sti
on

s
IC

Q
-1

W
ha

t i
s t

he
 te

am
w

or
k

re
pu

ta
tio

n
of

 e
m

pl
oy

ee
s a

nd
 th

ei
r p

er
io

d?
IC

Q
-2

W
hi

ch
 e

m
pl

oy
ee

s h
as

 c
om

pe
te

nc
e,

 x
?

IC
Q

-3
W

ha
t e

m
pl

oy
ee

s h
av

e
co

m
pe

te
nc

e,
 x

 a
nd

 sk
ill

s,
y

an
d

w
ha

t i
s t

he
 p

er
io

d
of

 ti
m

e?
IC

Q
-4

W
ha

t i
s t

he
 c

om
m

un
ic

at
io

n
le

ve
l,

co
or

di
na

tio
n

le
ve

l,
te

am
w

or
k

re
pu

ta
tio

n
an

d
cu

ltu
ra

l a
lig

nm
en

t o
f e

m
pl

oy
ee

s?
IC

Q
-5

H
ow

 m
uc

h
eff

or
t i

s a
llo

ca
te

d
to

 a
 ta

sk
?

175Information Technology and Management (2022) 23:167–192	

1 3

Table 5   Data Dictionary for OntoDASD Ontology

Term Description Source reference Pro-
spec-
tive
entity

People Characteristics Refers to the characteristics for team personnel SEO_Human Resource [25] Class
Site Characteristics Refers to the characteristics for different office

locations
Class

Task Characteristics Refers to the characteristics of activities
involved in a project

Class

Project Characteristics Refers to a process in which a product is
developed

SEO_Project [25] Class

Agile Characteristics Refers to a project management process for
software development

Class

Expertise Refers to the competency of team members in
a particular field

SEO_Competence [25] Class

Technical ability Refers to skills such as knowledge and ability
on methods, programming languages, tools
etc.

DASD_Technology skills [21] Class

Team members knowledge and skills Refers to knowledge and skills team members
require to coordinate within a team and
remain aligned

SEO_Knowledge Domain [25] Class

Personnel availability Refers to the availability of the team members
during the decision making process as well
as free to perform tasks

Class

Project Manager Maturity Refers to project manager experience in the
field and maturity in his profession

DASD_PM Experience [21] Class

Team Maturity Refers to a certain age experience in the
domain

DASD_Team experience [21] Class

Task Site Specificity Refers to application and platform experience
possessed by the team members

Class

Labor cost Refers to cost of professionals and other
resources

DASD_Cost [21] Class

Workload at site Refers to backlog of personnel and commit-
ments

DASD_Backlog Strategy [21] Class

Working time Refers to time zone when the various teams are
executing their task

TADSD_Timezone [25] Class

Cultural differences Refers to cultures and different working habits
of personnel

TADSD_Cultural Alignment level [25] Class

Site locations Refers to geographical location of office TADSD_Country [25] Class
Team willingness Refers to the motivation and interest of the

team to complete a task
Class

Communication Refers to the means to convey an information
in a project environment

DASD_DSD Communication [21] Class

Coordination Refers to a comprehensive understanding of
the project and what’s going on and when,
what other team members are doing and
what they should be doing for their work to
fit in with other team members work

DASD_Control and Coordination level
Required [21]

Class

Task Size Refers to the size of the task and helps to
determine the amount of time a resource will
complete the task

Class

Proximity to customer requirement Refers to how close the task is to the require-
ment

Class

Required resources Refers to hardware, software and human
requirements

DASD_IT Infrastructure for Collaboration
[21]

Class

Task deadline Refers to time allocated to complete a task DASD_Delivery Estimate [21] Class

176	 Information Technology and Management (2022) 23:167–192

1 3

Table 5   (continued)

Term Description Source reference Pro-
spec-
tive
entity

Effort Refers to effort level that is require to perform
a task is important while assigning task

Class

Product Architecture Refers to modules view, components and con-
nectors

Class

Product Refers to the nature of the product SPO_Artifact [25] Class
Transparency Refers to visiblity of actions taken in the

project
Class

Prioritized delivery Refers to priority provided to a particular task Class
Enough Documentation Refers to artifacts, product deliverables and

manuals to convey missing and unclear
information

Class

Customer collaboration Refers to customer knowledge and involvement Class
Language Fluency Refers to the proper use of foreign languages

accents
TADSD_Language [25] Class

Factors Refers to the factors affecting task allocation
and coordination in DASD

Class

Dependencies Refers to the process where the progress of
one action relies upon the timely output of
another action

Class

Knowledge Refers to the information required for the
advancement of a project

Class

Process Refers to the process when a task needs to be
finalized to allow another task to start or
proceed

Class

Resource Refers to what is needed for tasks to be carried
out such as personnel and tools

DKD_Resource [13] Class

Requirements Refers to customer needs with respect to the
project

Class

Activity Refers to a series of works to complete a task SPO_Activity [25] Class
Task Refers to a single output from work breakdown

structure in a project
Class

Technical aspects Refers to the technical specifications needed to
complete a task

DKD_Technical challenge [13] Class

Agile Software Process Refers to the software methodology used to
implement a project

Class

User Stories Refers to a very high-level definition of a
requirement and contains just enough infor-
mation so that the developers can produce a
reasonable estimate of the effort to imple-
ment it

DASD_User Stories [21] Class

Person A project stakeholder who has a role in the
project

[25] Class

Scrum Master Refers to a person in an agile development
who manages the team and processes

[9] Class

Product Owner Refers to a person in an agile development
who maximize value of the products

[9] Class

Quality Manager Refers to a person in an agile development
who works towards enhancing quality in the
organization

[9] Class

Designer Refers to a person in an agile development
who designs the products in an understand-
able manner for the programmer

[9] Class

177Information Technology and Management (2022) 23:167–192	

1 3

The ontology is being used for both transactional purpose,
task allocation and informational purposes, providing
coordination mechanisms. Rules are implemented to show
task allocation. The factors and dependencies that are
needed to effectively coordinate within team and between
teams, have been considered in the ontology.

Agile software process, dependencies, and factors
describe the domain of the ontology as demonstrated in
Fig. 6. The relationships between the subclasses describe
the task allocation and coordination process.

(A)	 Factors

This section describes the factors incorporated in the
ontology.

Agile related factors These factors are needed for pro-
moting flow of information between and within team from
different locations as illustrated in Fig. 7.

Task related factors Task-related factors as shown in
Fig. 8 such as Task Size and effort are required for perform-
ing the task. Other factors like delivery day estimate and
whether the task requires proximity to customer, are crucial
for task assignment process. Knowing the maximum effort
a team member can apply and the high-quality output prob-
ability are important. Before allocating a task to someone,
it is necessary to ensure that the person has the required
infrastructure to perform the task.

Project related factors Knowing how many years of
experience the project manager, the team or team member
have before starting a project is important. Whether the team
or team member is willing to undertake a particular project
helps to determine whether the person is committed to
perform the task. Project related factors are shown in Fig. 9.

Human resource related factors These factors as shown in
Fig. 10 will help to determine the capabilities of the person
with respect to the task requirements. Knowing who is avail-
able to perform the task and who has limited availability, are
necessary for task allocation process.

Site Related Factors In DASD, knowing your reporting
line is important to ensure that proper reporting. Sprint plan-
ning meetings should be performed via videoconference to
gather project status from team members. Meetings help to
raise alerts on time to avoid delay. The classes are com-
posed of different mechanisms for inter-team coordination,
which will be provided as information to the target audience.
Examples of instances include vertical communication, hori-
zontal communication, meetings, personal feedback and
group mode feedback. Knowing the cost of resources from
different countries is important before choosing resource.
Language, country and time zone are factors essential for
distributed settings. When working hours are not aligned,
teams may lack coordination. Figure 11 shows the factors
pertaining to the work site.

Table 5   (continued)

Term Description Source reference Pro-
spec-
tive
entity

Programmer Refers to a person in an agile development
who implements the product

[9] Class

Maintenance Specialist Refers to a person in an agile development
who is responsible for maintenance

[9] Class

Tester Refers to a person in an agile development
who performs testing

[9] Class

Configuration Manager Refers to a person in an agile development
who do configuration

[9] Class

Software tools competency Refers to competence in terms of capability to
use a tool

[9] Class

Task Allocation and Coordination Refers to the process of assigning tasks to
team members and communicating smoothly
within the team

Class

Stage Refers to agile stage [50] Class
Initiate Stage Refers to agile initiate stage OntoAgile_InitiateStage [50] Class
Sprint Stage Refers to agile sprint stage OntoAgile_SprintStage [50] Class
Release Stage Refers to agile release stage OntoAgile_ReleaseStage [50] Class
Implement Refers to agile implement phase OntoAgile_Implement [50] Class
Review Retrospect Refers to agile review retrospect phase OntoAgile_ReviewRetrospect [50] Class
Plan Refers to agile plan phase OntoAgile_PlanEstimate [50] Class

178	 Information Technology and Management (2022) 23:167–192

1 3

(B)	 Dependencies

As we deal with coordination in distributed environment,
managing dependencies between teams in distributed envi-
ronment is critical. The dependencies as shown in Fig. 12,
are described as follows:

Knowledge Knowledge dependency is the informa-
tion required to perform task allocation. It is then broken
down into two main knowledge required: competence and
requirements dependency. Knowing who is good in perform-
ing which task and who is stuck with a particular task are
essential for the smooth running of an organization. When
insufficient information have been gathered on a require-
ment, this causes a delay in the process as details need to
be identified. The concepts will help decision makers to

consider the dependencies by prioritizing requirements and
gathering competence information properly of employees.

Process Process dependency is when a process needs to
be completed before another process to start. It is therefore
divided into two main dependencies applicable for agile
software development: user stories and activities. When an
activity depends on the completion of another activity and
the latter is delayed, this affect project progress. An example
is the start of testing depends on the completion of program-
ming. When user stories need to be implemented on a spe-
cific order then any problem may delay the whole process.

DKD_Resource Resource dependency is what is needed
for a task to be carried out. Resource dependency is divided
into personnel and technical challenge. Having to wait for
a person or unavailability of personnel delay the project

Fig. 5   OntoDASD concept mapping

179Information Technology and Management (2022) 23:167–192	

1 3

Fig. 6   OntoDASD-task allocation and coordination

Fig. 7   Agile related factors

180	 Information Technology and Management (2022) 23:167–192

1 3

progress. Lack of technical tools to perform task, prevents a
task from being done.

(C)	 Agile Software Development Process

Since the OntoDASD is designed for agile practitioners, it is
necessary to include concepts and relationships related to agile

software development process. The concepts and relationships
were reused from OntoAgile [50] as shown in Fig. 13.

3.5 � Implementation phase

In this phase, the formal model from the previous phase is
implemented in an ontology language OWL using Protégé
tool. OWL was developed to model business domain and

Fig. 8   Task related factors

Fig. 9   Project related factors

Fig. 10   Human resource related factors

181Information Technology and Management (2022) 23:167–192	

1 3

bridge business-IT gap by providing vocabulary to describe
business knowledge using formal semantics, understandable
by both business and computer programs [51].

The taxonomy in Sect. 3.4 is formalized, whereby the
hierarchy of concepts are translated into parent–child
relationships of classes. Classes represent concepts in
the domain. Features and attributes of the concepts are
represented as properties. The ontology constituted a
knowledge base with a set of individual instances of classes.
A top-down development approach was adopted where

the most general concepts such as AgileSoftwareProcess,
Dependencies, Factors and Tasks were defined followed
by creating the subclasses. Figure 14 shows the breakdown
among the different levels of generality.

Due to space constraints only selected sub classes are
depicted. The class AgileSoftwareProcess and subclass
SiteCharacteristics show that our focus is on DASD. By
incorporating knowledge of relationships among agile soft-
ware process stages, dependencies, factors and tasks, the
ontology allows reasoning about task allocation in DASD.

Fig. 11   Site related factors

Fig. 12   Dependencies

Fig. 13   Agile software development process

182	 Information Technology and Management (2022) 23:167–192

1 3

3.6 � Rules and relationships between classes

An ontology with only classes is useless without relations
between them. Figures 15 and 16 show object properties
and datatype properties, which are used to create relation-
ships between instances of the class created. In addition to
axioms, SWRL (Semantic Web Rule Language) are rules
expressed in terms of OWL concepts (classes, properties,
and individuals). SWRL has been used to model parts of
OntoDASD that was not possible with OWL. SWRL rules

can also be used for validation by computing outputs. With
the help of SWRL built-ins, a pool of domain-specific rules
can be used and modelled [51].

Rule 1 If a person p is to be assigned a task t, check if the
backlog effort, e together with the effort required, r for the
task do not exceed the maximum capacity that is the produc-
tivity, m of the person.

Listing 1  SWRL Rule for assigning task taking into consid-
eration backlog properties

Fig. 14   Classes levels of OntoDASD 
Fig. 15   Object properties

183Information Technology and Management (2022) 23:167–192	

1 3

Rule 2 If a person x is a team member of project z and a
project manager y manages project z this implies that person
x reports to project manager y.

Listing 2  SWRL Rule for reporting line within a team

Rule 3 If a team member has applied efforts less than that
assigned to a task and has good reputation and has delivered
before deadline, this implies team member willingness.

Listing 3  SWRL Rule for determining team member will-
ingness before allocating task

Rule 4 If a task t requires a competence c and technology
skills s and a person has experience is greater than 1 year
and has performed task in the past, this implies that team
member is capable to perform task.

Listing 4  SWRL Rule for determining capability of a team
member to perform the task

184	 Information Technology and Management (2022) 23:167–192

1 3

4 � Ontology evaluation

In this phase, the ontology is evaluated based on a set of
metrics and with respect to competency questions defined
in Sect. 3.1.4.

4.1 � Metrics and formal validation

According to [50], the evaluation process consists of three
main elements related to performance and correct definition:
consistency, completeness and conciseness. With the
ontology implemented in Protégé in OWL Language, the
Pellet reasoner was used to evaluate both the computational
efficiency and consistency. The ontology is processed in
463 ms by Pellet. This does not only show how fast the
standard reasoning processes can be applied to the ontology

but also the lack of inconsistencies in the implementation.
The ontology was adapted to answer almost all the questions
in Table 6.

Table 7 shows an evaluation of the OntoDASD Ontology
based on “Knowledge coverage and popularity measures”
proposed by [52]. In other words, it shows the number of
distinct classes, object properties, data properties and indi-
viduals present in the ontology.

4.2 � Evaluation of requirements and answer
to competency questions

The RDF Query Language (SPARQL) was also used to
evaluate the effectiveness of the ontology. Protégé in built
SPARQL tool was used to execute queries to the ontology.
The ability of the ontology to answer competency ques-
tions in Sect. 3.1 was evaluated. The competency questions
(ICQ1-ICQ5) were translated from natural language to
SPARQL queries. The data obtained as a result of execution
validates the purpose fulfillment of the ontology.

The following was used as PREFIX when running the
SPARQL Queries:

OntoDASD: http://​www.​seman​ticweb.​org/​shweta/​ontol​
ogies/​2020/2/​TaskA​lloca​tionA​ndCoo​rdina​tionO​ntolo​gy#

Figures 17, 18, 19, 20 and 21 show the results of the com-
petency questions defined in ORSD defined in Sect. 3.1.4.

(A)	 ICQ-1

Fig. 16   Datatype properties

Table 6   Evaluation criteria

Criteria Questions Yes

Accuracy Have the concepts been represented in a
logical form that comply to the expertise to
the users?

✓

Does the ontology capture and correctly
represent aspects of the real world?

✓

Clarity Does the ontology effectively communicate
the intended meaning of the defined terms?

Are the definitions documented? ✓
Is the ontology understandable? ✓

Complete-
ness

Is the domain of interest appropriately
covered?

✓

Are competency questions defined and can
the ontology answer them?

✓

Does the ontology include all relevant
concepts?

✓

Conciseness Does the ontology not contain redundant and
useless definitions?

✓

Does the ontology define only essential terms?

http://www.semanticweb.org/shweta/ontologies/2020/2/TaskAllocationAndCoordinationOntology#
http://www.semanticweb.org/shweta/ontologies/2020/2/TaskAllocationAndCoordinationOntology#

185Information Technology and Management (2022) 23:167–192	

1 3

Figure 17 lists the employee, his teamwork reputation and
years of experience.

(B)	 ICQ-2

Figure 18 shows all employees with competency in Java
Programming.

Table 7   Entity counts in
OntoDASD

Metric Value

Number of classes 62
Number of properties 41
 Datatype properties 23
 Object properties 18

Number of individuals 62

Fig. 17   Results of ICQ-1

186	 Information Technology and Management (2022) 23:167–192

1 3

Fig. 18   Results of ICQ-2

Fig. 19   Results of ICQ-3

187Information Technology and Management (2022) 23:167–192	

1 3

(C)	 ICQ-3

Figure 19 lists all employees having experience in Abap
Programming and the relevant years of experience.

(D)	 ICQ-4

Figure 20 shows the communication level, coordination
level, teamwork reputation and cultural alignment of all
employees.

(E)	 ICQ-5

Figure 21 shows the effort that has been allocated to each
task.

4.3 � Domain‑expert evaluation

OntoDASD has been assessed by agile professionals via a
survey questionnaire. The structure of the survey has been

designed in such a way that the ontology content and rela-
tionship have been presented to the participants. The ontol-
ogy is evaluated based on criteria such as consistency, com-
pleteness and accuracy. It was difficult to collect feedback
from domain experts due to COVID-19 pandemic where
most experts were working from home and were not easily
reachable. Only ten participants consisting of team mem-
bers, lead software engineer, development team, product
owner, scrum master, junior software engineer, senior soft-
ware developer and senior application developer provided
their feedback on OntoDASD. As shown in Table 8, the
majority had more than 1 year experience in DASD. This
gave us confidence that they were best suited to evaluate
OntoDASD.

(A)	 Completeness
	  All the participants agreed that OntoDASD

describes all concepts related to Task Allocation and
Coordination in DASD as shown in Fig. 22.

(B)	 Consistency

Fig. 20   Results of ICQ-4

188	 Information Technology and Management (2022) 23:167–192

1 3

	  The majority of the participants agreed that all
relevant concepts related to the DASD domain have
been represented in the ontology as shown in Fig. 23.

(C)	 Accuracy
	  Figure 24 reports on the ontology accuracy. A rating

of 1–5 was defined (1—Inaccurate, 2—Moderately
Inaccurate, 3—Moderately Accurate, 4—Accurate,
5—Very Accurate. The majority of the participants
agreed that OntoDASD captures and correctly
represents aspects of the real world.

Most of the professionals reported that OntoDASD satis-
fies criteria of completeness, consistency and accuracy based
on the graphs illustrated in Figs. 22, 23 and 24. One or two
participants disagreed and argued that other factors such as

Fig. 21   Results of ICQ-5

Fig. 22   Ontology completeness

Table 8   Survey participants

Participant Years of
experience in
DASD

Product owner 5
Scrum master 5
Team member 1
Lead software engineer 2
Development team member 3
Junior software engineer 1
Engineer 1
Senior software developer 4
Senior application developer 4.5
Team member 1

189Information Technology and Management (2022) 23:167–192	

1 3

Daily Feedback and dependencies such as Business Process
Dependency could have been considered in the process of
task allocation and coordination in DASD. As described
in Sect. 3.4, the most influential factors and dependencies
affecting task allocation and coordination were incorporated
in the ontology, based on a survey carried out in industry by
Nundlall and Nagowah [36]. In future, the ontology can be
improved by incorporating new factors and dependencies
that evolve.

4.4 � Discussion

OntoDASD meets all the criteria defined in Table 1 namely
Factors, Dependencies, Task Allocation process, DSD, Agile
Software Development, Taxonomy and Ontology. None of
the existing studies found met all the criteria. This study
complements the existing studies by further incorporat-
ing factors and dependencies related to task allocation and
coordination in DASD. OntoDASD reused the findings of
Rajpathak et al. [23] and Almeida et al. [24] in its ontol-
ogy. OntoDASD incorporated some of the concepts from
Ijaz and Aslam [10] and Strode and Huff [12] that are mostly
used by organizations in the ontology. OntoDASD used both
metrics and tools for evaluation purposes. OntoDASD also
used SWRL rules and SPARQL queries as mentioned in
Sects. 3.5 and 4.2 respectively.

4.4.1 � Implications for practitioners

OntoDASD represents a knowledge model where there is a
common understanding of the terms and concepts related
to the task allocation and coordination process in DASD
projects. High-level knowledge regarding project informa-
tion, agile software process information and staff details
among others are represented in the ontology so that there
is a homogeneous comprehension of the project and pro-
cess information as well as staff involved (their expertise
and availability). Practitioners can thus use the ontology to
perform task allocation based on task and employee profile.
A project manager can use the ontology to search for most
suitable employee for a particular task based on knowledge
about agile software process stages, dependencies, factors
and tasks. Several queries described in Sect. 4.2 can be per-
formed using the ontology. Furthermore, the ontology makes
use of SWRL rules for proper reasoning about task alloca-
tion in DASD as described in Sect. 3.5.

5 � Conclusion

The main contribution of this research work is an ontol-
ogy, OntoDASD, which provides a taxonomy of factors and
dependencies influencing task allocation and coordination
process in the area of distributed agile software develop-
ment. The conceptualization of OntoDASD was based on
an in-depth analysis of relevant literature and practitioners’

Fig. 23   Ontology consistency

Fig. 24   Ontology accuracy

190	 Information Technology and Management (2022) 23:167–192

1 3

feedback via a survey. As a result, the knowledge model,
OntoDASD.

1.	 provides agile team members and project managers
located in distributed sites with a common understand-
ing of the criteria and aspects necessary for effective
task allocation and coordination process in DASD

2.	 adopts most relevant factors and dependencies based on
experts in the field situated around the world

3.	 reuses vocabulary from existing ontologies in the field
in an attempt to harmonize the terms.

The ontology was formally validated using metrics. Addi-
tionally, the competency questions were answered using
SPARQL query language showing that the ontology met
the requirements defined initially in ORSD. It was further
evaluated by conducting a survey among experts in industry.
Most of the professionals reported that OntoDASD satis-
fies criteria of completeness, consistency and accuracy. The
ontology could be used as a reference point for academia and
industry to pursue further research in that field.

5.1 � Limitations

Despite the numerous advantages of OntoDASD described
in previous sections, it cannot be claimed that OntoDASD
is a complete ontology. Based on the survey carried out (as
described in Sect. 3.1.2), OntoDASD considers the most rel-
evant and influential factors and dependencies affecting task
allocation and coordination in DASD. It does not cater for
all existing factors and dependencies affecting task alloca-
tion and coordination. OntoDASD can further be extended
in future by combining various other ontologies within
the DASD domain and by incorporating new factors and
dependencies.

5.2 � Future works

OntoDASD has modelled the key concepts and knowledge
of DASD domain. The vocabulary provided in the ontology
illustrates the knowledge related to distributed agile software
development in a generic manner. As future works, an ontol-
ogy-based task allocation and coordination tool that utilizes
OntoDASD will be implemented to support task allocation
and coordination process among team members in DASD.

The tool will consist of a number of features namely
Task Recommendation, Task Self-Assignment, Viewing of
project backlog and team member backlog at a site, Check-
ing availability of team member of any site, Comparing site
workforce cost, Determining most suitable team member
for a task, Task completion notification, Viewing/editing of
team activities by Project manager/team leader, Viewing of
task dependencies, Assisting in manual task allocation by

displaying comments, Prioritizing tasks based on factors,
Productivity insights of team members and Task Tracking
amongst others.

References

	 1.	 Kamaruddin N, Arshad N, Mohamed A (2012) Comparison of
drivers between global software development and agile global
software development: a SURVEY. Computer and Mathematical
Sciences Graduates National Colloqium 2013, At Faculty of
Computer and Mathematical Sciences, UiTM Shah Ala

	 2.	 Stray V, Moe NB (2020) Understanding coordination in global
software engineering: a mixed-methods study on the use of
meetings and Slack. J Syst Softw 170:110717. https://​doi.​org/​10.​
1016/j.​jss.​2020.​110717

	 3.	 Zaitsev A, Gal U, Tan B (2020) Coordination artifacts in agile
software development. Inf Organ 30(2):100288. https://​doi.​org/​
10.​1016/j.​infoa​ndorg.​2020.​100288

	 4.	 Lin J (2013) Context-aware task allocation for distributed agile
team. In: 2013 28th IEEE/ACM international conference on
automated software engineering (ASE). IEEE, pp 758–761.
https://​doi.​org/​10.​1109/​ASE.​2013.​66931​51

	 5.	 Sistla K, Sherry A (2016) A comparative study of collocated and
distributed agile software development. Int J Adv Res 4:2320–
5407. https://​doi.​org/​10.​21474/​IJAR01/​1904

	 6.	 Kudaravalli S, Faraj S, Johnson SL (2017) A configural approach
to coordinating expertise in software development teams. MIS Q
41(1):43–64. https://​doi.​org/​10.​25300/​MISQ/​2017/​41.1.​03

	 7.	 Layman L, Williams L, Damian D, Bures H (2006) Essential
communication practices for Extreme Programming in a global
software development team. Inf Softw Technol 48(9):781–794.
https://​doi.​org/​10.​1016/j.​infsof.​2006.​01.​004

	 8.	 Masood Z, Hoda R, Blincoe K (2020) How agile teams make
self-assignment work: a grounded theory study. Empir Softw Eng
25(6):4962–5005. https://​doi.​org/​10.​1007/​s10664-​020-​09876-x

	 9.	 Aslam W, Ijaz F (2018) A quantitative framework for task allo-
cation in distributed agile software development. IEEE Access
6:15380–15390. https://​doi.​org/​10.​1109/​ACCESS.​2018.​28036​85

	10.	 Ijaz F, Aslam W (2019) Identification of dependencies in task
allocation during distributed agile software development. Sindh
Univ Res J 51(01):31–36

	11.	 Sekitoleko N, Evbota F, Knauss E, Sandberg A, Chaudron M,
Olsson HH (2014) Technical dependency challenges in large-scale
agile software development. In: International conference on agile
software development. Springer, Cham, pp 46–61. https://​doi.​org/​
10.​1007/​978-3-​319-​06862-6_4

	12.	 Strode DE, Huff SL (2012) A taxonomy of dependencies in
agile software development. In: 23rd Australasian conference on
information systems

	13.	 Rocha R, Araujo A, Cordeiro D, Ximenes A, Teixeira J, Silva
G, Duarte M (2018) DKDOnto: an ontology to support software
development with distributed teams. Procedia Comput Sci
126:373–382. https://​doi.​org/​10.​1016/j.​procs.​2018.​07.​271

	14.	 Shrivastava SV (2010) Distributed agile software development: a
review. arXiv preprint arXiv:​1006.​1955

	15.	 Bhatia MPS, Kumar A, Beniwal R (2015) Ontology based
framework for automatic software's documentation. In: 2015
2nd international conference on computing for sustainable global
development (INDIACom). IEEE, pp 421–424

	16.	 Vizcaíno A, García F, Piattini M, Beecham S (2016) A validated
ontology for global software development. Comput Stand Inter-
faces 46:66–78. https://​doi.​org/​10.​1016/j.​csi.​2016.​02.​004

https://doi.org/10.1016/j.jss.2020.110717
https://doi.org/10.1016/j.jss.2020.110717
https://doi.org/10.1016/j.infoandorg.2020.100288
https://doi.org/10.1016/j.infoandorg.2020.100288
https://doi.org/10.1109/ASE.2013.6693151
https://doi.org/10.21474/IJAR01/1904
https://doi.org/10.25300/MISQ/2017/41.1.03
https://doi.org/10.1016/j.infsof.2006.01.004
https://doi.org/10.1007/s10664-020-09876-x
https://doi.org/10.1109/ACCESS.2018.2803685
https://doi.org/10.1007/978-3-319-06862-6_4
https://doi.org/10.1007/978-3-319-06862-6_4
https://doi.org/10.1016/j.procs.2018.07.271
http://arxiv.org/abs/1006.1955
https://doi.org/10.1016/j.csi.2016.02.004

191Information Technology and Management (2022) 23:167–192	

1 3

	17.	 Kumar SA, Kumar TA (2011) Study the impact of requirements
management characteristics in global software development
projects: an ontology based approach. Int J Softw Eng Appl
2(4):107. https://​doi.​org/​10.​5121/​ijsea.​2011.​2410

	18.	 Rocha R, Bion D, Azevedo R, Gomes A, Cordeiro D, Leandro R,
Silva I, Freitas F (2020) A syntactic and semantic assessment of
a global software engineering domain ontology. In: Proceedings
of the 22nd international conference on information integration
and web-based applications & services, pp 253–262. https://​doi.​
org/​10.​1145/​34287​57.​34291​43

	19.	 Martínez-García JR, Castillo-Barrera FE, Palacio RR, Borrego
G, Cuevas-Tello JC (2020) Ontology for knowledge condensation
to support expertise location in the code phase during software
development process. IET Softw 14(3):234–241. https://​doi.​org/​
10.​1049/​iet-​sen.​2019.​0272

	20.	 Gruber TR (1993) A translation approach to portable ontology
specifications. Knowl Acquis 5(2):199–220

	21.	 Wongthongtham P, Chang E, Dillon T, Sommerville I (2008)
Development of a software engineering ontology for multisite
software development. IEEE Trans Knowl Data Eng 21(8):1205–
1217. https://​doi.​org/​10.​1109/​TKDE.​2008.​209

	22.	 Pahl C (2007) An ontology for software component matching. Int
J Softw Tools Technol Transf 9(2):169–178. https://​doi.​org/​10.​
1007/​s10009-​006-​0015-9

	23.	 Rajpathak D, Motta E, Roy R (2001) A generic task ontology for
scheduling applications. In: International conference on artificial
intelligence (ICAI’2001)

	24.	 Almeida LH, Pinheiro PR, Albuquerque AB (2011) Applying
multi-criteria decision analysis to global software development
with scrum project planning. In: International conference on rough
sets and knowledge technology. Springer, Berlin, Heidelberg, pp
311–320. https://​doi.​org/​10.​1007/​978-3-​642-​24425-4_​41

	25.	 Marques AB, Carvalho J R, Rodrigues R, Conte T, Prikladnicki
R, Marczak S (2013) An ontology for task allocation to teams in
distributed software development. In: 2013 IEEE 8th international
conference on global software engineering. IEEE, pp 21–30.
https://​doi.​org/​10.​1109/​ICGSE.​2013.​12

	26.	 Mak DK, Kruchten PB (2006) Task coordination in an agile
distributed software development environment. In: 2006 Canadian
conference on electrical and computer engineering. IEEE, pp
606–611. https://​doi.​org/​10.​1109/​CCECE.​2006.​277524

	27.	 Falbo RDA, Bertollo G (2009) A software process ontology as a
common vocabulary about software processes. Int J Bus Process
Integr Manag 4(4):239–250. https://​doi.​org/​10.​1504/​IJBPIM.​
2009.​032281

	28.	 Santos G, Villela K, Montoni M, Rocha AR, Travassos GH,
Figueiredo S, Amaral M (2005) Knowledge management in a
software development environment to support software processes
deployment. In: Biennial conference on professional knowledge
management/Wissensmanagement. Springer, Berlin, Heidelberg,
pp 111–120. https://​doi.​org/​10.​1007/​11590​019_​14

	29.	 Almeida LH, Albuquerque AB (2011) A multi-criteria model
for planning and fine-tuning distributed scrum projects. In:
2011 IEEE sixth international conference on global software
engineering. IEEE, pp 75–83. https://​doi.​org/​10.​1109/​ICGSE.​
2011.​36

	30.	 Paasivaara M, Blincoe K, Lassenius C, Damian D, Sheoran J,
Harrison F, Isotalo V (2015) Learning global agile software
engineering using same-site and cross-site teams. In: 2015
IEEE/ACM 37th IEEE international conference on software
engineering. IEEE, vol 2, pp 285–294. https://​doi.​org/​10.​1109/​
ICSE.​2015.​157

	31.	 Sauer J (2010) Architecture-centric development in globally
distributed projects. In: Agility across time and space. Springer,
Berlin, Heidelberg, pp 321–329. https://​doi.​org/​10.​1007/​978-3-​
642-​12442-6_​22

	32.	 Suarez-Figueroa MC, Gomez-Perez A, Motta E, Gangemi A
(2012) Introduction: ontology engineering in a networked world.
In Ontology engineering in a networked world. Springer, Berlin,
Heidelberg, pp 1–6. ISBN 978-3-642-24794-1

	33.	 Sheth A (ed) (2012) Semantic-enabled advancements on the web:
applications across industries: applications across industries. IGI
Global. ISBN: 9781466601857

	34.	 Suárez-Figueroa MC (2009) D5.3.2 Revision and extension of the
NeOn development process and ontology life cycle. ISBN 3-540-
44268-5. 28

	35.	 Nundlall C, Nagowah SD (2021) Task allocation and coordination
in distributed agile software development: a systematic
review. Int J Inf Tecnol 13:321–330. https://​doi.​org/​10.​1007/​
s41870-​020-​00543-4

	36.	 Nundlall C, Nagowah SD (2021) Factors affecting task allocation
and coordination in distributed agile software development. In:
Panigrahi CR, Pati B, Pattanayak BK, Amic S, Li K-C (eds)
Progress in advanced computing and intelligent engineering.
Advances in intelligent systems and computing, vol 1299.
Springer, Singapore. https://​doi.​org/​10.​1007/​978-​981-​33-​4299-
6_​66

	37.	 Bick S, Spohrer K, Hoda R, Scheerer A, Heinzl A (2017)
Coordination challenges in large-scale software development:
a case study of planning misalignment in hybrid settings. IEEE
Trans Softw Eng 44(10):932–950. https://​doi.​org/​10.​1109/​TSE.​
2017.​27308​70

	38.	 Hashmi AS, Hafeez Y, Jamal M, Ali S, Iqbal N (2019) Role
of situational agile distributed model to support modern
software development teams. Mehran Univ Res J Eng Technol
38(3):655–666

	39.	 Moe NB, Cruzes D, Dybå T, Mikkelsen E (2015) Continuous
software testing in a globally distributed project. In: 2015 IEEE
10th international conference on global software engineering.
IEEE, pp 130–134. https://​doi.​org/​10.​1109/​ICGSE.​2015.​24

	40.	 Moe NB, Šmite D, Šāblis A, Börjesson AL, Andréasson P
(2014) Networking in a large-scale distributed agile project. In:
Proceedings of the 8th ACM/IEEE international symposium on
empirical software engineering and measurement, pp 1–8. https://​
doi.​org/​10.​1145/​26525​24.​26525​84

	41.	 Szőke Á (2010) Optimized feature distribution in distributed agile
environments. In: International conference on product focused
software process improvement. Springer, Berlin, Heidelberg, pp
62–76. https://​doi.​org/​10.​1007/​978-3-​642-​13792-1_7

	42.	 Collins E, Macedo G, Maia N, Dias-Neto A (2012) An industrial
experience on the application of distributed testing in an agile
software development environment. In: 2012 IEEE seventh
international conference on global software engineering. IEEE,
pp 190–194. https://​doi.​org/​10.​1109/​ICGSE.​2012.​40

	43.	 Papadopoulos G (2015) Moving from traditional to agile software
development methodologies also on large, distributed projects.
Procedia Soc Behav Sci 175(2):455–463. https://​doi.​org/​10.​
1016/j.​sbspro.​2015.​01.​1223

	44.	 Simão Filho M, Pinheiro PR, Albuquerque AB (2015) Task
allocation approaches in distributed agile software development:
a quasi-systematic review. In: Software engineering in intelligent
systems. Springer, Cham, pp 243–252. https://​doi.​org/​10.​1007/​
978-3-​319-​18473-9_​24

	45.	 Nordio M, Estler HC, Meyer B, Aguirre N, Prikladnicki R, Di
Nitto E, Savidis A (2014) An experiment on teaching coordination
in a globally distributed software engineering class. In: 2014 IEEE
27th conference on software engineering education and training
(CSEE&T). IEEE, pp 109–118. https://​doi.​org/​10.​1109/​CSEET.​
2014.​68167​88

https://doi.org/10.5121/ijsea.2011.2410
https://doi.org/10.1145/3428757.3429143
https://doi.org/10.1145/3428757.3429143
https://doi.org/10.1049/iet-sen.2019.0272
https://doi.org/10.1049/iet-sen.2019.0272
https://doi.org/10.1109/TKDE.2008.209
https://doi.org/10.1007/s10009-006-0015-9
https://doi.org/10.1007/s10009-006-0015-9
https://doi.org/10.1007/978-3-642-24425-4_41
https://doi.org/10.1109/ICGSE.2013.12
https://doi.org/10.1109/CCECE.2006.277524
https://doi.org/10.1504/IJBPIM.2009.032281
https://doi.org/10.1504/IJBPIM.2009.032281
https://doi.org/10.1007/11590019_14
https://doi.org/10.1109/ICGSE.2011.36
https://doi.org/10.1109/ICGSE.2011.36
https://doi.org/10.1109/ICSE.2015.157
https://doi.org/10.1109/ICSE.2015.157
https://doi.org/10.1007/978-3-642-12442-6_22
https://doi.org/10.1007/978-3-642-12442-6_22
https://doi.org/10.1007/s41870-020-00543-4
https://doi.org/10.1007/s41870-020-00543-4
https://doi.org/10.1007/978-981-33-4299-6_66
https://doi.org/10.1007/978-981-33-4299-6_66
https://doi.org/10.1109/TSE.2017.2730870
https://doi.org/10.1109/TSE.2017.2730870
https://doi.org/10.1109/ICGSE.2015.24
https://doi.org/10.1145/2652524.2652584
https://doi.org/10.1145/2652524.2652584
https://doi.org/10.1007/978-3-642-13792-1_7
https://doi.org/10.1109/ICGSE.2012.40
https://doi.org/10.1016/j.sbspro.2015.01.1223
https://doi.org/10.1016/j.sbspro.2015.01.1223
https://doi.org/10.1007/978-3-319-18473-9_24
https://doi.org/10.1007/978-3-319-18473-9_24
https://doi.org/10.1109/CSEET.2014.6816788
https://doi.org/10.1109/CSEET.2014.6816788

192	 Information Technology and Management (2022) 23:167–192

1 3

	46.	 Banijamali A, Dawadi R, Ahmad MO, Similä J, Oivo M,
Liukkunen K (2016) An empirical study on the impact of
Scrumban on geographically distributed software development.
In: 2016 4th international conference on model-driven engineering
and software development (MODELSWARD). IEEE, pp 567–577.
ISBN:978-1-5090-5898-3

	47.	 Alzoubi YI, Gill AQ, Al-Ani A (2015) Distributed agile
development communication: an agile architecture driven
framework. JSW 10(6):681–694. https://​doi.​org/​10.​17706/​jsw.​
10.6.​681-​694

	48.	 McCarthy S, O'Raghallaigh P, Fitzgerald C, Adam F (2019)
Towards a framework for shared understanding and shared
commitment in agile distributed ISD project teams. In:
ECIS 2019, proceedings of the 27th European conference on
information systems. AIS Electronic Library (AISeL), pp 1–15.
ISBN 978-1-7336325-0-8

	49.	 Nyrud H, Stray V (2017) Inter-team coordination mechanisms
in large-scale agile. In: Proceedings of the XP2017 scientific
workshops, pp 1–6. https://​doi.​org/​10.​1145/​31204​59.​31204​76

	50.	 Ortega-Ordoñez WA, Pardo-Calvache CJ, Pino-Correa FJ (2019)
OntoAgile: an ontology for agile software development processes.
DYNA 86(209):79–90. https://​doi.​org/​10.​15446/​dyna.​v86n2​09.​
76670

	51.	 MacLarty I, Langevine L, Bossche MV, Ross P (2009) Using
SWRL for rule-driven applications

	52.	 Fernández M, Overbeeke C, Sabou M, Motta E (2009) What makes
a good ontology? A case-study in fine-grained knowledge reuse.
In: Asian semantic web conference. Springer, Berlin, Heidelberg,
pp 61–75. https://​doi.​org/​10.​1007/​978-3-​642-​10871-6_5

	53.	 Smith RK, Hale JE, Parrish AS (2001) An empirical study using
task assignment patterns to improve the accuracy of software
effort estimation. IEEE Trans Softw Eng 27(3):264–271

	54.	 Rocha R, Leandro R, Silva I, Araujo J, Bion D, Freitas F, Cordeiro
D, Gomes A, Azevedo R (2021) DKD-S: an ontology-based tool
for global software development. In: 2021 16th Iberian conference
on information systems and technologies (CISTI). IEEE, pp 1–6.
https://​doi.​org/​10.​23919/​CISTI​52073.​2021.​94763​86

	55.	 Anzures-García M, Sánchez-Gálvez LA, Hornos MJ, Paderewski-
Rodríguez P (2018) A workflow ontology to support knowledge
management in a group’s organizational structure. Comput Sist
22(1):163–178. https://​doi.​org/​10.​13053/​cys-​22-1-​2781

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.17706/jsw.10.6.681-694
https://doi.org/10.17706/jsw.10.6.681-694
https://doi.org/10.1145/3120459.3120476
https://doi.org/10.15446/dyna.v86n209.76670
https://doi.org/10.15446/dyna.v86n209.76670
https://doi.org/10.1007/978-3-642-10871-6_5
https://doi.org/10.23919/CISTI52073.2021.9476386
https://doi.org/10.13053/cys-22-1-2781

	Task allocation and coordination process in distributed agile software development: an ontology based approach
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Initiation phase
	3.1.1 Literature review
	3.1.2 Survey
	3.1.3 Motivation scenario
	3.1.4 Ontology requirements specification document (ORSD)

	3.2 Reuse phase
	3.3 Reengineering phase and merging phase
	3.4 Ontology description and modelling phase
	3.5 Implementation phase
	3.6 Rules and relationships between classes

	4 Ontology evaluation
	4.1 Metrics and formal validation
	4.2 Evaluation of requirements and answer to competency questions
	4.3 Domain-expert evaluation
	4.4 Discussion
	4.4.1 Implications for practitioners

	5 Conclusion
	5.1 Limitations
	5.2 Future works

	References

