Abstract
We introduce inductive definitions over language expressions as a framework for specifying tree tuple languages. Inductive definitions and their subclasses correspond naturally to classes of logic programs, and operations on tree tuple languages correspond to the transformation of logic programs. We present an algorithm based on unfolding and definition introduction that is able to deal with several classes of tuple languages in a uniform way. Termination proofs for clause classes translate directly to closure properties of tuple languages, leading to new decidability and computability results for the latter.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap 8, pp. 445–532. Elsevier, Dordrect, The Netherlands (2001)
Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree automata. In: Finkel, A., Jantzen, M. (eds.) Ninth Annual Symposium on Theoretical Aspects of Computer Science, vol. 577 of LNCS, pp. 161–171. Springer, Berlin Heidelberg New York (1992)
Charatonik, W., Podelski, A.: Set constraints with intersection. Inf. Comput. 179(2), 151–385 (2002)
Comon, H., Dauchet, M., Gilleron, R., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (TATA). www.grappa.univ-lille3.fr/tata (1997)
Dauchet, M., Tison, S.: Structural complexity of classes of tree languages. In: Nivat, M., Podelski, A. (eds.) Tree Automata and Languages, pp. 327–353. North-Holland, Amsterdam, The Netherlands (1992)
Fermüller, C., Leitsch, A.: Hyperresolution and automated model building. J. Log. Comput. 2(6), 173–203 (1996)
Fermüller, C., Leitsch, A., Hustadt, U., Tammet, T.: Resolution decision procedures. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. II, chap. 25, pp. 1791–1849. Elsevier, Dordrecht, The Netherlands (2001)
Fermüller, C.G., Salzer, G.: Ordered paramodulation and resolution as decision procedure. In: Voronkov, A. (ed.) Logic Programming and Automated Reasoning (LPAR’93), LNCS 698 (LNAI), pp. 122–133. Springer, Berlin Heidelberg New York (1993)
Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types for logic programs. In: Logic in Computer Science, pp. 300–309. IEEE Computer Society Press, Los Alamitos, CA (1991)
Gallagher, J.P., Puebla, G.: Abstract interpretation over non-deterministic finite tree automata for set-based analysis of logic programs. In: 4th International Symposium, PADL 2002, vol. 2257 of LNCS, pp. 243–261. Springer, Berlin Heidelberg New York (2002)
Gilleron, R., Tison, S., Tommasi, M.: Set constraints and automata. Inf. Comput. 1(149), 1–41 (1999)
Goubault-Larrecq, J.: Higher-order positive set constraints. In: Proceedings 16th Int Workshop Computer Science Logic (CSL’2002), Edinburgh, Scotland, Sep 2002, vol. 2471 of LNCS, pp. 473–489. Springer, Berlin Heidelberg New York (2002)
Goubault-Larrecq, J., Verma, K.N.: Alternating two-way AC-tree automata. Research Report LSV-02-11, Lab. Specification and Verification, 21 pages. ENS de Cachan, Cachan, France (2002)
Gouranton, V., Réty, P., Seidl, H.: Synchronized tree languages revisited and new applications. In: Proceedings of 6th Conference on Foundations of Software Science and Computation Structures, Genova (Italy), vol. 2030 of LNCS, pp. 214–229. Springer, Berlin Heidelberg New York (2001)
Heintze, N., Jaffar, J.: A finite presentation theorem for approximating logic programs. In: Proceedings of the 17th ACM Symp on Principles of Programming Languages, pp. 197–209. ACM Press, New York (1990)
Leitsch, A.: Decision procedures and model building, or how to improve logical information in automated deduction. In: Caferra, R., Salzer, G. (eds.) Automated Deduction in Classical and Non-Classical Logics, vol. 1761 of LNCS, pp. 62–79. Springer, Berlin Heidelberg New York (2000)
Limet, S., Pillot, P.: Solving first order formulae of pseudo-regular theory. In: International Colloquium on Theoretical Aspects of Computing (ICTAC05), vol. 3722 of LNCS, pp. 110–124. Springer, Berlin Heidelberg New York (2005)
Limet, S., Réty, P.: E-unification by means of tree tuple synchronized grammars. Discret. Math. Theor. Comput. Sci. 1, 69–98 (1997)
Lloyd, J.: Foundations of Logic Programming. Springer, Discret. Math. Theor. Comput. Sci. (1984)
Matzinger, R.: Computational representations of models in first-order logic. Dissertation, Technische Universität Wien, Austria (2000)
Nielson, F., Nielson, H.R., Seidl, H.: Normalizable Horn clauses, strongly recognizable relations and Spi. In: Proc SAS’02, vol. 2477 of LNCS, pp. 20–35. Springer, Berlin Heidelberg New York (2002)
Pettorossi, A., Proietti, M.: Transformation of logic programs. In: Gabbay, D., Hogger, C., Robinson, J. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 5, pp. 697–787. Oxford University Press, London, UK (1998)
Raoult, J.-C.: Rational tree relations. Bull. Belg. Math. Soc. 4(1), 149–176 (1997). www.ulb.ac.be/assoc/bms/bms.bull.html
Réty, P.: Langages synchronisés d’arbres et applications. Habilitation thesis (in French), LIFO, Université d’Orléans (2001)
Salzer, G.: The unification of infinite sets of terms and its applications. In: Voronkov, A. (ed.) Logic Programming and Automated Reasoning (LPAR’92), vol. 624 of LNCS, pp. 409–420. Springer, Berlin Heidelberg New York (1992)
Salzer, G.: Solvable classes of cycle unification problems. In: Dassow, J., Kelemenova, A. (eds.) Proc 7th Int. Meeting of Young Computer Scientists (1992), Developments in Theoretical Computer Science, pp. 215–225. Gordon and Breach, New York (1992)
Saubion, F., Stéphan, I.: A unified framework to compute over tree synchronized grammars and primal grammars. Discret. Math. Theor. Comput. Sci. 5, 227–262 (2002)
Seidl, H.: Haskell overloading is DEXPTIME-complete. Inf. Process. Lett. 52(2), 57–60 (1994)
Seynhaeve, F., Tison, S., Tommasi, M., Treinen, R.: Grid structures and undecidable constraint theories. Theor. Comp. Sci. 258(1/2), 453–490 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Limet, S., Salzer, G. Tree Tuple Languages from the Logic Programming Point of View. J Autom Reasoning 37, 323–349 (2006). https://doi.org/10.1007/s10817-006-9064-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-006-9064-8