Skip to main content
Log in

A Framework for Certified Boolean Branch-and-Bound Optimization

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We consider optimization problems of the form (S, cost), where S is a clause set over Boolean variables x 1 ... x n , with an arbitrary cost function \(\mathit{cost}\colon \mathbb{B}^n \rightarrow \mathbb{R}\), and the aim is to find a model A of S such that cost(A) is minimized. Here we study the generation of proofs of optimality in the context of branch-and-bound procedures for such problems. For this purpose we introduce \(\mathtt{DPLL_{BB}}\), an abstract DPLL-based branch-and-bound algorithm that can model optimization concepts such as cost-based propagation and cost-based backjumping. Most, if not all, SAT-related optimization problems are in the scope of \(\mathtt{DPLL_{BB}}\). Since many of the existing approaches for solving these problems can be seen as instances, \(\mathtt{DPLL_{BB}}\) allows one to formally reason about them in a simple way and exploit the enhancements of \(\mathtt{DPLL_{BB}}\) given here, in particular its uniform method for generating independently verifiable optimality proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makhorin, A.: GLPK 4.25 (GNU Linear Programming Kit). Available at http://www.gnu.org/software/glpk/ (2007)

  2. Amgoud, L., Cayrol, C., Berre, D.L.: Comparing arguments using preference ordering for argument-based reasoning. In: ICTAI, pp. 400–403 (1996)

  3. Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Efficient generation of unsatisfiability proofs and cores in SAT. In: Proceedings of LPAR’08. Lecture Notes in Computer Science, vol. 5330, pp. 16–30. Springer, Heidelberg (2008)

    Google Scholar 

  4. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123(1–3), 155–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency assignment. Constraints 4, 79–89 (1999)

    Article  MATH  Google Scholar 

  7. Cimatti, A., Griggio, A., Sebastiani, R.: A simple and flexible way of computing small unsatisfiable cores in SAT Modulo Theories. In: Proceedings of SAT’07. Lecture Notes in Computer Science, vol. 4501, pp. 334–339. Springer, Heidelberg (2007)

    Google Scholar 

  8. Coudert, O.: On solving binate covering problems. In: Proceedings of DAC’96, pp. 197–202. ACM (1996)

  9. Coudert, O., Madre, J.C.: New ideas for solving covering problems. In: Proceedings of DAC’95, pp. 641–646. ACM (1995)

  10. Flores, P.F., Neto, H.C., Marques-Silva, J.P.: An exact solution to the minimum size test pattern problem. ACM Transact. Des. Automat. Electron. Syst. 6(4), 629–644 (2001)

    Article  Google Scholar 

  11. Fu, Z., Malik, S.: Solving the minimum cost satisability problem using SAT based branch-and-bound search. In: Proceedings of ICCAD’06, pp. 852–859 (2006)

  12. Hammer, P., Hansen, P., Simeone, B.: Roof duality, complementation and persistency in quadratic 0–1 optimization. Math. Program. 28, 121–155 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hoos, H.H., Stützle, T.: SATLIB: an online resource for research on SAT. In: Proceedings of SAT’00, pp. 283–292. IOS Press (2000). SATLIB is available online at www.satlib.org

  14. ILOG S.A.: ILOG CPLEX Version 11.000 (2007). http://www.ilog.com/products/cplex

  15. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving. Artif. Intell. 172(2–3), 204–233 (2008)

    Article  MATH  Google Scholar 

  16. Larrosa, J., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Branch and bound for boolean optimization and the generation of optimality certificates. In: 12th International Conference on Theory and Applications of Satisfiability Testing, SAT’09. Lecture Notes in Computer Science, vol. 5584, pp. 453–466 (2009)

  17. Li, X.Y.: Optimization Algorithms for the Minimum-Cost Satisfiability Problem. Ph.D. thesis, Dept. Comp. Sc., N. Carolina State Univ. (2004)

  18. Liao, S., Devadas, S.: Solving covering problems using LPR-based lower bounds. In: Procs. DAC’97, pp. 117–120. ACM (1997)

  19. Manquinho, V.M., Marques-Silva, J.P.: Search pruning conditions for boolean optimization. In: Proceedings of ECAI 2000, pp. 103–107. IOS Press (2000)

  20. Manquinho, V.M., Marques-Silva, J.P.: Search pruning techniques in SAT-based branch-and-bound algorithms for the binate covering problem. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 21(5), 505–516 (2002)

    Article  Google Scholar 

  21. Manquinho, V.M., Marques-Silva, J.P.: Satisfiability-based algorithms for boolean optimization. Ann. Math. Artif. Intell. 40(3–4), 353–372 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Marques-Silva, J., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  23. Moskal, M.: Rocket-fast proof checking for SMT solvers. In: 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’08. Lecture Notes in Computer Science, vol. 4963, pp. 486–500. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  24. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and optimization problems. In: Proceedings of SAT’06. Lecture Notes in Computer Science, vol. 4121, pp. 156–169. Springer, Heidelberg (2006)

    Google Scholar 

  25. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: from an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  Google Scholar 

  26. Park, J.D.: Using weighted max-SAT engines to solve MPE. In: Proc. of the 18th AAAI, pp. 682–687. Edmonton, Alberta, Canada (2002)

  27. Sandholm, T.: An algorithm for optimal winner determination in combinatorial auctions. In: IJCAI-99, pp. 542–547 (1999)

  28. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

    MATH  Google Scholar 

  29. Werner, T.: A Linear Programming Approach to Max-Sum Problem: A Review. Tech. Rep. CTU-CMP-2005-25, Center for Machine Perception, Czech Technical University (2005)

  30. Xing, Z., Zhang, W.: Maxsolver: an efficient exact algorithm for (weighted) maximum satisfiability. Artif. Intell. 164(1–2), 47–80 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in boolean satisfiability solver. In: ICCAD, pp. 279–285 (2001)

  32. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications. In: 2003 Conference on Design, Automation and Test in Europe Conference, DATE’03, pp. 10,880–10,885. IEEE Computer Society (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Larrosa.

Additional information

Partially supported by Spanish Min. of Science and Innovation through the projects TIN2009-13591-C02-01 and TIN2007-68093-C02-01 (LogicTools-2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrosa, J., Nieuwenhuis, R., Oliveras, A. et al. A Framework for Certified Boolean Branch-and-Bound Optimization. J Autom Reasoning 46, 81–102 (2011). https://doi.org/10.1007/s10817-010-9176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9176-z

Keywords

Navigation