Abstract
Linear logic can be used as a meta-logic to specify a range of object-level proof systems. In particular, we show that by providing different polarizations within a focused proof system for linear logic, one can account for natural deduction (normal and non-normal), sequent proofs (with and without cut), and tableaux proofs. Armed with just a few, simple variations to the linear logic encodings, more proof systems can be accommodated, including proof system using generalized elimination and generalized introduction rules. In general, most of these proof systems are developed for both classical and intuitionistic logics. By using simple results about linear logic, we can also give simple and modular proofs of the soundness and relative completeness of all the proof systems we consider.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abrusci, V.M., Ruet, P.: Non-commutative logic I: the multiplicative fragment. Ann. Pure Appl. Logic 101(1), 29–64 (1999)
Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2(3), 297–347 (1992)
Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artif. Intell. 4, 225–248 (1991)
Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward chaining in the inverse method. J. Autom. Reason. 40(2–3), 133–177 (2008)
Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical logics. In: 23th Symp. on Logic in Computer Science, pp. 229–240. IEEE Computer Society Press (2008)
D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations with analytic cut. J. Log. Comput. 4(3), 285–319 (1994)
Danos, V., Joinet, J.-B., Schellinx, H.: LKT and LKQ: sequent calculi for second order logic based upon dual linear decompositions of classical implication. In: Girard, J.-Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society Lecture Note Series, no. 222, pp. 211–224. Cambridge University Press (1995)
Dyckhoff, R., Lengrand, S.: LJQ: a strongly focused calculus for intuitionistic logic. In: Beckmann, A., et al. (eds.) Computability in Europe 2006. LNCS, vol. 3988, pp. 173–185. Springer (2006)
Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic programming language. In: Ninth International Conference on Automated Deduction, pp. 61–80. Argonne, IL, Springer (1988)
Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1969)
Girard, J.-Y.: Le Point Aveugle: Cours de Logique: Tome 1, Vers la Perfection. Hermann (2006)
Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM 40(1), 143–184 (1993)
Henriksen, A.S.: Using LJF as a Framework for Proof Systems. Technical Report, U. of Copenhagen (2009). Available from http://hal.inria.fr/inria-00442159/en/
Hodas, J., Miller, D.: Logic programming in a fragment of intuitionistic linear logic. Inf. Comput. 110(2), 327–365 (1994)
Hughes, D.: A minimal classical sequent calculus free of structural rule. Ann. Pure Appl. Logic 161(10), 1244–1253 (2010)
Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–169 (1958)
Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)
Maehara, S.: Eine darstellung der intuitionistischen logik in der klassischen. Nagoya Math. J. 7, 45–64 (1954)
Miller, D.: Forum: a multiple-conclusion specification logic. Theor. Comput. Sci. 165(1), 201–232 (1996)
Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007: Computer Science Logic. LNCS, vol. 4646, pp. 466–480. Springer (2007)
Miller, D., Pimentel, E.: Using linear logic to reason about sequent systems. In: Egly, U., Fermüller, C.G. (eds.) International Conference on Automated Reasoning with Analytic Tableaux and Related Methods. LNCS, vol. 2381, pp. 2–23. Springer (2002)
Miller, D., Pimentel, E.: Linear logic as a framework for specifying sequent calculus. In: van Eijck, J., van Oostrom, V., Visser, A. (eds.) Logic Colloquium ’99: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic. Lecture Notes in Logic, pp. 111–135. A K Peters Ltd (2004)
Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Ann. Pure Appl. Logic 51, 125–157 (1991)
Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press (2001)
Nigam, V.: Exploiting Non-canonicity in the Sequent Calculus. PhD thesis, Ecole Polytechnique (2009)
Nigam, V., Miller, D.: Focusing in linear meta-logic. In: Proceedings of IJCAR: International Joint Conference on Automated Reasoning. LNAI, vol. 5195, pp. 507–522. Springer (2008)
Nigam, V., Miller, D.: Focusing in Linear Meta-logic: Extended Report. Available at: http://hal.inria.fr/inria-00281631 (2008). Accessed 24 May 2008
Nigam, V., Miller, D.: Algorithmic specifications in linear logic with subexponentials. In: ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP), pp. 129–140 (2009)
Parigot, M.: Free deduction: an analysis of “computations” in classical logic. In: Proceedings of the First Russian Conference on Logic Programming, pp. 361–380. London, UK, Springer (1992)
Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reason. 5, 363–397 (1989)
Pfenning, F.: Elf: a language for logic definition and verified metaprogramming. In: Logic in Computer Science, pp. 313–321. Monterey, CA (1989)
Pimentel, E., Miller, D.: On the specification of sequent systems. In: LPAR 2005: 12th International Conference on Logic for Programming, Artificial Intelligence and Reasoning. LNAI, no. 3835, pp. 352–366 (2005)
Pimentel, E.G.: Lógica Linear e a Especificação de Sistemas Computacionais. PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte, M.G., Brasil (2001). Written in English
Prawitz, D.: Natural Deduction. Almqvist & Wiksell, Uppsala (1965)
Schroeder-Heister, P.: A natural extension of natural deduction. J. Symb. Log. 49(4), 1284–1300 (1984)
Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Stud. Log. 60(1), 67–106 (1998)
Smullyan, R.M.: First-Order Logic. Springer, New York (1968)
Smullyan, R.M.: Analytic cut. J. Symb. Log. 33(4), 560–564 (1968)
von Plato, J.: Natural deduction with general elimination rules. Arch. Math. Log. 40(7), 541–567 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nigam, V., Miller, D. A Framework for Proof Systems. J Autom Reasoning 45, 157–188 (2010). https://doi.org/10.1007/s10817-010-9182-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10817-010-9182-1